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UNIT - I 

1. OVERVIEW OF C 

1.1HISTORY OF C 

‘C’ seems a strange name for a programming language. But this strange sounding language 

is one of the most popular computer languages today because it is a structured, high-level, 

machine independent language.  It allows software developers to develop programs without 

worrying about the hardware platforms where they will be implemented. 

The root of all modern languages is ALGOL, introduced in the early 1960s.  ALGOL was 

he first computer language to use a block structure.  Although it never became popular in USA, it 

was widely used in Europe.  ALGOL gave the concept of structured programming to the 

computer science community.  Computer scientists like Corrado Bohm, Jacopini and Edsger 

Dijkstra popularized this concept during 1960s. Subsequently, several languages were 

announced. 

In 1967, Martin Richards developed a language called BCPL (Basic Combined 

Programming Language) primarily for writing system. In 1970, Ken Thompson created a 

language using many features of BCPL and called it simply B. B was used to create early 

versions of UNIX operating system at Bell Laboratories.  Both BCPL and B were “type less” 

system programming languages. 

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in 

1972.  C uses many concepts from these languages and added the concept of data types and other 

powerful features.  Since it was developed along with UNIX operating system, it is strongly 

associated with UNIX.  This operating system, which was also developed at Bell Laboratories, 

was coded almost entirely in C.  UNIX is one of the most popular network operating system in 

use today and the heart of the Internet data superhighway. 

For many years, C was used mainly in academic environments, but eventually with the 

release of many C compilers for commercial use and increasing popularity of UNIX, it began to 

gain widespread support among computer professionals.  Today, C running under a variety of 

operating system and hardware platforms. 
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During 1970s, C had developed into what is now known as “traditional C”.  The language 

became more popular after publication of the book ‘The C Programming Language’ by Brian 

Kerningham and Dennis Ritchie in 1978.  The book was so popular that the language came to 

known as “K&R C” among the programming community.  The rapid growth of C led to the 

development of different versions of the language that were similar but often incompatible.  This 

posed a serious problem for system developers. 

To assure that the C language remains standard, in 1983, American National Standards 

Institute (ANSI) appointed a technical committee to define a standard for C.  The committee 

approved a version of in December 1989 which is now known as ANSI C.  It was then approved 

by the International Standards Organization (ISO) in 1990.  This version of C is also referred to 

as C89. 

During 1990s, C++, a language entirely based on C, Underwent number of improvements 

and changes and became an ANSI/ISO approved language in November 1977.  C++ added 

several new features to features to make it not only a true object-oriented language but also a 

more versatile language.  During the same period, Sun Microsystems of USA created a new 

language JAVA modelled on C and C++. 

All popular computer languages are dynamic in nature.  They continue to improve their 

power and scope by incorporating new features and C is no exception.  Although C++ and JAVA 

were evolved out of C, the standardization committee of C felt that a few features of C++/Java, if 

added to C, would enhance the usefulness of the language.  The result was the 1999 standard for 

C.  This version is usually referred to as C99.  The history and development of C is illustrated in 

Fig.1.1. 

                      1960         ALGOL   INTERNATIONAL GROUP 

  1967       BCPL   MARTIN RICHARDS            

  1970             B     THOMPSON 

  1972 TRADITIONAL C  DENNIS RITCHIE 

  1978      K&R C   KERNIGHAN AND RITCHIE 
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  1989      ANSI C    ANSI COMMITTEE  

  1990      ANSI/ISO C   ISO COMMITTEE 

  1999        C99   STANDARDIZATION COMMITTEE  

Fig 1.1 History of ANSI C 

Although C99 is an improved version, still many commonly available compilers do not 

support all of the new features incorporated in C99. We therefore discuss all the new features 

added by C99 in an appendix separately so that the readers who are interested can quickly refer 

to the new material and use them wherever possible. 

1.2 IMPORTANCE OF C 

The increasing popularity of C is probably due to its many desirable qualities.  It is a robust 

language whose rich set of built-in functions and operators can be used to write any complex 

program.  The C compiler combines the capabilities of assembly language with the features of  

high- level  language and therefore it is well suited for writing both system software and business 

packages.  In fact, many of the C compilers available in the market are written in C. 

Programs written in C are efficient and fast.  This is due to its variety of data types and 

powerful operators.  It is many times faster than BASIC.  For example, a program to increment a 

variable from   0 to 15000 takes about one second in C while it takes more than 50seconds in an 

interpreter BASIC. 

There are only 32 keywords in ANSI C and its strength lies in its built-in functions.  Several 

standard functions are available which can be used for developing programs.   

     C is highly portable.  This means that C programs written for one computer can be run on 

another with little or no modification.  Portability is important if we plan to use a new computer 

with a different operating system. 

     C language is well suited for structured programming, thus requiring the user to think of a 

problem in terms of function modules or blocks.  A proper collection of these modules would 
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make a complete program.  This modular structure makes program debugging, testing and 

maintenance easier.   

     Before discussing specific features of C, we shall look at some sample C programs, and 

analyze and understand how they work. 

1.3 Sample Program 1: Printing a Message 

Consider a very simple program, given in fig1.2 

                         main() 

  { 

  /*…………printing begins…………..*/ 

           Printf(“I see, I remember”); 

  /*…………printing ends……………..*/ 

                        }            

Fig 1.2 A program to print one line of text 

This program when executed will produce the following output: 

                                        I see, I remember 

Let us have a close look at the program.  The first line informs the system that the name of the 

program is main and execution begins at this line.  The main() is a special function used  by the 

C system to tell the computer where the program starts.  Every program must have exactly one 

main function.  If we use more than one main function, the compiler cannot understand which 

one marks the beginning of the program. 

     The empty pair of parentheses immediately following main indicates that the function main 

has no arguments (or parameters).   

     The opening brace “{“in the second line marks the beginning of the function main and the 

closing brace “}” in the last line indicates the end of the function.  In this case, the closing brace 
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also marks the end of the program.  All the statements between these two braces form the 

function body.  The function contains a set of instructions to perform the given task 

     In this case, the function body contains three statements out of which only the printf line is 

an executable statement.  The lines beginning with */ and ending with */ are known as comment 

lines.  These are used in a program to enhance its readability and understanding.  Comment lines 

are not executable statements and therefore anything between /* and */ is ignored by the 

compiler.  In    general, a comment can be inserted wherever blank spaces can occur-at the 

beginning, middle or end of a line –“but never in the middle of a word”. 

     Although comments can appear anywhere, they cannot be nested in C.  That means, we 

cannot have comments inside comments.  Once the compiler finds an opening token, it ignores 

everything until it finds a closing token.  The comment line  

                         /*=====/*=====*/====*/ 

is not valid and therefore results in an error. 

     Since comments do not affect the execution speed and the size of a compiled program, we 

should use them liberally in our programs.  They help programmers and other users in 

understanding the various functions and operations of program and serve as an aid to debugging 

and testing.  We shall see the use of comment lines more in the examples that fellow.   

     Let us now look at the printf( ) function, the only executable statement of the program. 

                  printf(“I see, I remember”); 

Printf is a predefined standard C function for printing output.  Predefined means that it is a 

function that has already been written and compiled, and linked together with our program at the 

time of linking.  The concepts of compilation and linking are explained later in this chapter.  The 

printf function causes everything between the starting and ending quotation marks to print out.  

In this case, the output will be: 

    I see remember, I remember 
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 Note that the print line ends with a semicolon.  Every statement in c should end with a 

semicolon (;) mark. Suppose we want to print the above quotation in two lines as  

    I see,  

    I remember! 

This can be achieved by adding another printf function as shown below: 

    printf(“I see,\n”); 

    printf(“I remember !”); 

The information contained between the parentheses is called the argument of the function.   This 

argument of the first printf is “I see, \n” and the second is “I remember!”  These arguments are 

simply strings of characters to be printed out. 

Notice that the argument of the first printf contains a combination of two characters \ and n 

at the end of the string. This combination is collectively called the newline character.  A newline 

character instructs the computer to go the next (new) line.  It is similar in concept to the carriage 

return key on a typewriter.  After printing the character comma (,) the presence of the newline 

character \n causes the string “I remember!” to be printed on the next line.  No space is allowed 

between \ and n. 

If we omit the newline character from the first printf statement, then the output will again 

be a single line as shown below. 

    I see, I remember! 

This is similar to the output of the program in fig 1.2 however; note that there is no space 

between, and I. 

Note:  some authors recommended the inclusion of the statement 

    #include<stdio.h> 

At the beginning of all programs that use any input/output library functions.  However, this is not  
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necessary for the functions printf and scanf which have been defined as a part of the C 

language. See chapter 4 for more on input and output functions.   

Before we proceed to discuss further examples, we must not one important point.  C does 

make a distinction between uppercase and lowercase letters.  For example, printf and PRINTF 

are not the same.  In C, everything is written in lowercase letters.  However, uppercase letters are 

used for symbolic names representing constants.  We may also use uppercase letters in output 

string like “I SEE” and “I REMEMBER”. 

The above example that printed I see, I remember is one of the simplest programs.  Fig 1.3 

highlights the general format of such simple programs.  All programs need a main function.   

  

 Function name 

  Start of program 

  

 Program statements 

 

 

 

 End of program 

Fig.1.3 Format of simple C programs 

THE MAIN FUNCTION 

The main is a part of every C program.  C permits different forms of main statement.   Following 

forms are allowed. 

 main( ) 

 intmain( ) 

main() 

      { 

 

     …………………… 

      …………………… 

 

 

} 
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 voidmain( ) 

 main(void) 

 void main(void) 

 int main(void) 

The empty pair of parentheses indicates that the function has no arguments.   This may be 

explicitly indicated by using the keyword void inside parentheses.  We may also specify the 

keyword int or void before the word main.  The keyword void means that the function does not 

return any information to the operating system and int means that the function returns an integer 

value to the operating system.  When int is specified, the last statements in the program must be 

“return 0”.  For the sake of simplicity, we use the first form in our programs.   

1.4 SAMPLE PROGRAM  

2: ADDING TWO NUMBERS 

Consider another program, which performs addition two numbers and displays the result.  

The complete program is shown in Fig.1.4 

           /* program ADDITION Line-1*/ 

 /* written by EBG                                                         Line-2*/ 

   main()     /* Line-3*/ 

       {                                                                                  /* Line-4*/ 

          int number;                                                          /* Line-5*/ 

                 float number     /* Line-6*/ 

     /*  Line-7*/ 

                 number = 100;     /* Line-8*/ 

      /* Line-9*/ 

                 amount = 30.75 + 75.35;  /*   Line-10*/ 
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       printf(“%d\n”,number);     /* Line-11*/ 

       printf(“%5.2f”,amount);     /* Line-12*/ 

 } 

Fig 1.4 Program when executed will produce the following output: 

                             100 

                                      106.10 

The first two lines of the program are comment lines. It is a good practice to use 

comment lines in the beginning to give information such as name of the program, author, 

date, etc.  Comment characters are also used in other lines to indicate line numbers.  

     The words number and amount are variable names that are used to store numeric 

data.  The numeric data may be either in integer form or in real form.  In C, all variables 

should be declared to tell the compiler what the variables names are and what type of 

data they hold.  The variables must be declared before they are used.   In lines 5 and 6, 

the declarations                            int number; 

                                                       float amount; 

tell the compiler that number is an integer(int) and amount is a floating(float)point number.  

Declaration statements must appear at the beginning of the functions as shown in Fig.1.4.  all 

declaration statements end with a semicolon;  C supports many other data types and they are 

discussed in detail in Chapter 2.   

     The words such as int and float are called the keywords and cannot be used as variable 

names.  A list of keywords is given in chapter 2. 

     Data is stored in a variable by assigning a data value to it.  This is done in lines 8 and 10.   In 

line-8, an integer value 00 is assigned to the integer variable number and in line-10; the result of 

addition of two real numbers 30.75 and 75.35 is assigned to the floating point variable amount.  

The statements   
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                                           number = 100; 

                                             amount = 30.75 + 75.35;    

are called the assignment statements.  Every assignment statement must have a semicolon at the 

end.  The next statement is an output statement that prints the value of number.   |The print 

statement 

                                               printf(“%d\n”,  number); 

contain two arguments.   The first argument”%d” tells the compiler that the value of the second 

argument number should be printed as a decimal integer.  Note that these arguments are 

separated by a comma.   The last statement of the program0  

                                                printf(“%5.2f”, amount); 

prints out the value of amount in floating point format.  The format specification %5.2f tells the 

compiler that the output must be in floating point, with five places in all and two places to the 

right of decimal point. 

1.5 SAMPLE PROGRAM  

3: INTEREST CALCULATION 

 The program in fig.1.5 calculates the value of money at the end of each year of 

investment, assuming an interest rate of 11 percent and prints the year, and the corresponding 

amount, in tow columns.  The output is shown in fig 1.6 for a period of 10 years with an initial 

investment of 5000.00.  The program uses the following formula: 

Value at the end of year = value at start of year (1+ interest rate) 

In the program, the variable value represents the value of money at the end of the year while 

amount represents the value of mone at the start of the year.  The statement  

amount = value; 

Makes the value at the end of the current year as the value at start of the next year.   
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/*…………………INVESTMENT PROBLEM……………….*/ 

#define PERIOD 10 

#define PRINCIPAL 5000.00  

/*…………………MAIN PROGRAM BEGINE……………..*/ 

main() 

{/*…………..DECLARATION STATEMENTS ………………..*/ 

int year; 

float amount, value, inrate; 

/*…………..ASSIGNMENT STATEMENTS…………………….*/ 

amount = principal; 

inrate = 0.11;  

year = 0; 

/*…………..COMPUTATION STATEMENTS…………………..*/ 

/*…………..COMPUTATION USING WHILE LOOP…………….*/ 

while(year <= period) 

{ 

printf(“%2d   %8.2f\n”,year, amount); 

value = amount + inrate * amount; 

year = year + 1; 

amount = value; 

} 
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/*……………WHILE LOOP ENDS………………………..*/ 

} 

/*……………PROGRAM ENDS…………………………..*/ 

Fig 1.5 Program for investment problem 

Let us consider the new features introduced in this program.  The second and third lines begin 

with #define instruction.  A #define value to a symbolic constant for use in the program 

whenever a symbolic name is encountered, the compiler substitutes the value associated with the 

name automatically.  To change the value, we have to simply change the definition.  In this 

example, we have defined two symbolic constants PERIOD and PRINCIPAL and assigned 

values 10 and 5000.00 respectively.  These values remain constant throughout the execution of 

the program. 

0 5000.00 

1 5550.00 

2 6160.50 

3 7590.35 

4 8425.29 

5 9352.07 

6 10380.00 

7 11522.69 

8 12790.00 

9 14197.11 

Fig 1.6 Output of the investment program 

The #define directive 

 A # define is pre-processor compiler directive and not a statement.  Therefore #define 

lines should not end with a semicolon.  Symbolic constants are generally written in uppercase so 

that they are easily distinguished from lowercase variable names.  #define instruction are usually 
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placed at the beginning before the main( ) function.  Symbolic constants are not declared in 

declaration section.  Pre-processor are discussed in chapter 14. 

     We must note that the defined constants are not variables.   We may not change their values 

within the program by using an assignment statement.  For example, the statement  

PRINCIPAL = 10000.00;     is illegal. 

The declaration section declares year as integer and amount, value and inrate as floating 

point numbers.  Note all the floating-point variables are declared in one statement.  They can also 

be declared as  

float amount; 

float value; 

float inrate; 

When two or more variables are declared in one statement, they are separated by a comma. 

All computations and printing are accomplished in a while loop.  While is mechanism for 

evaluating repeatedly a statement or a group of statements.  In this case as long as the value of 

year is less than or equal to the value of PERIOD, four statements that follow while are 

executed.  Note that these four statements are grouped by braces.  We exit the loop when year 

becomes greater than PERIOD the concept and types of loops are discussed in chapter6. 

C supports the basic four arithmetic operators| (-, +,*, /) along with several others.  They are 

discussed in chapter 3. 

1.6 SAMPLE PROGRAM 4: USE OF SUBROUTINES 

So far, we have used only printf function that has been provided for us by the C system.  

The program shown in fig 1.7 uses a user-defined function.  A function defined by the user is 

equivalent to subroutine in FORTRAN or subprogram in BASIC.   

Fig 1.7 presents a very simple program that uses a mul( ) function.  The program will print the 

following output. 
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MULTIPLICATION OF 5 AND 10 IS 50 

/*…………..PROGRAM USING FUNCTION…………..*/ 

int mul (int a, int b); 

/*…………..DECLARATION…………..*/ 

main() 

{ 

int a, b, c; 

a = 5; 

b = 10; 

c = mul (a,b); 

printf (“multiplication of %d and %d is %d”, a,b,c); 

} 

/*…………..MAIN PROGRAM ENDS MUL() FUNCTION STARTS…………..*/ 

int mul (int x, int y) 

int p; 

{ 

p = x*y; 

return(p); 

} 

/*…………..MUL ( ) FUNCTION ENDS …………..*/ 

Fig 1.7  A program using a user defined function. 
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The mul ( ) function multiplies the values of x and y and the result is returned to the main() 

function when it is called in the statement  

c = mul (a, b); 

The mul ( ) has two arguments x and y that are declared as integers.  The values of  a and b are 

passed on to x and y respectively when the function mul ( ) is called.  User-defined function are 

considered in detail chapter 9. 

1.7 SAMPLE PROGRAM: USE OF MATH FUNCTIONS 

We often use standard mathematical functions such as cos, sin, exp, etc.  We shall see now 

the use of a mathematical function in a program.  The standard mathematical functions are 

defined kept as a part of C math library.  If we want to use any of these mathematical functions, 

we must add an #include instruction in the program,.  Like #define, it is also a compiler directive 

that instructs the compiler to link the specified mathematical functions from the library.  The 

instruction is of the form 

#include <math.h>  

math.h is the filename containing the required function.  Figure 1.8 illustrates the use of cosine 

function.  The program calculates cosine values for angles 0, 10, 20,………, 180 and prints out 

the results with headings.    

/*…………..PROGRAM USING COSIN FUNCTION…………..*/ 

#define <math.h> 

#define PI 3.1416 

#define MAX 180  

main ( ) 

 { 

int angle ; 
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float x,y; 

angle = 0; 

printf(“ angle        cos(angle)\n\n”); 

while(angle <= MAX) 

{ 

x = (PI/(MAX)*angle; 

y = cos(x); 

printf(“%15d %13.4f\n”, angle, y); 

angle = angle+ 10; 

} 

 } 

OUTPUT 

Angle    cos(angle) 

 0   1.0000 

10   0.9848 

20   0.9397 

30   0.8660 

40   0.7660 

50   0.6428 

60   0.5000 

70   0.3420 
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80   0.1736 

90             -0.0000 

100   -0.1737 

110              -0.3420 

120   -0.5000 

130   -0.6428  

140   -0.7660 

150   -0.8660 

160   -0.9367 

170   -0.9848 

180   -1.0000   

    Fig 1.8 Program using a math function 

 

Another #include instruction that is offer required is  

#include <stdio.h> 

stdio.h refers to the standard I/O header file containing standard input and output functions. 

The #include directive 

As mentioned earlier, C programs are divided int modules or functions.  Some functions are 

written by users, like us, many others are stored in the C library.  Library functions are grouped 

category wise and stored in different files known as header files.   If we want to access the 

functions stored in the library, it is necessary to tell the compiler about the files to be accessed.    

This is achieved by using the pre-processor directive #include as follows: 
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#include<filename> 

filename is the name of the library file that contains the required function definition.  Pre-

processor directives are placed at the beginning of a program.   

A list of library function and header files containing them are given in Appendix III. 

1.8 BASIC STRUCTURE OF C PROGRAMS 

The examples discussed so far illustrate that a C program can be viewed as a group of 

building blocks called functions.  A function is a subroutine that may include one or more 

statements designed to perform a specific task.  To write a C program, we first create functions 

and then put them together.  A C program may contain one or more sections as shown in fig 1.9. 

Documentation section 

Linksection  

Definition section 

Globla Declaration Section 

main ( ) Function section 

{  

Declaration part 

Executable part 

} 

Subprogram section 

Function 1 

Function 2 

……….                         (User-defined functions) 

……… 
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Function n 

Fig 1.9 An overview of a C program 

     The documentation section consists of a set of comment lines giving the name of the 

program, the author and other details, which the programmer would like to use later.  The link 

section provides instructions to the compiler to link functions from the system library.  The 

definition section defines all symbolic constants.   

There are some variables that are used in more than one function.  Such variables are called 

global variables and are declared in the global declaration section that is outside of all the 

functions.  This section also declares all the user-defined functions.   

Every C program must have one main ( ) function section.  This contains two parts, 

declaration part and executable part.  The declaration part declares all the variables used in the 

executable part.  There is at least one statement in the executable part.  These two parts mst 

appear between the opening and closing braces.  The program execution begins at the opening 

brace and ends at the closing brace.  The closing brace of the main function section is the logical 

end of the program.  All statements in the declaration and executable parts end with a semicolon 

(;). 

The subprogram section contains all the user-defined functions that are called in the main 

function.  User-defined functions are generally placed immediately after the main function, 

although they may appear in any order.   

All sections, except the main function section may be absent when they are not required. 

1.9 PROGRAMMING STYLE 

Unlike some other programming languages (COBOL, FORTRAN,etc..,) C is a free-form 

language.  That is, the C compiler does not care where on the line we begin typing.  While this 

may be a licence for bad programming, we should try to use this fact to our advantage in 

developing readable programs.  Although several alternative styles are possible, we should select 

one style and use it with total consistency. 
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First of all, we must develop the habit of writing programs in lowercase letters.  C program 

statements are written in lowercase letters.  Uppercase letters are used only for symbolic 

constants.  

Braces, group program statements together and mark the beginning and the end of functions.  

A proper indentation of braces and statements would make a program easier to read and debug.  

Note how the braces are aligned and the statements are indented in the program of fig 1.5. 

     Since C is free-form language, we can group statements together on one line.  The statements  

a = b; 

 x = y + a; 

z = a + x; 

Can be written on one  line as  

a=b;x=y+1;z=a+x; 

The program   main( ) 

      { 

      Printf(“hello C”); 

  } 

May be written in one line like  

    main ( ) {printf(“Hello C”)}; 

However, this style makes the program more difficult to understand and should not be used.  In 

this book, each statement is written on a separate line.  The generous use of comments inside a 

program cannot be overemphasized.  Judiciously inserted comments not only increase the 

readability but also help to understand the program logic.  This is very important for debugging 

and testing the program.   
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1.10 EXECUTING A ‘C’ PROGRAM 

Executing a program written in C involves a series of steps.  These are: 

1. Creating the program; 

2. Compiling the program: 

3. Linking the program with function that are needed form the C library; and  

4. Executing the program 

Figure 1.10 illustrates the process of creating, compiling and executing a C program.  Although 

there steps remain the same irrespective of the operating system, system commands for 

implementing steps and conventions for naming files may differ on different system.     

     An operating system is a program that controls the entire operation of a computer system.  All 

input/output operations are channelled through the operating system.  The operating system, 

which is a interface between the hardware and the user, handles the execution of user programs.  

     The two most popular operating systems today are UNIX (for minicomputers) and MS-DOS 

(for microcomputers).  We shall discuss briefly the procedure to follow in executing C programs 

under both these operating systems in the following sections. 

1.11 UNIX SYSTEM 

Creating the Program 

Once we load the UNIX operating system into the memory, the computer is ready to receive 

program.  The program must be entered int a file.  The file name can consist of letter, digits and 

special characters, followed by a dot and a letter C.  Examples of valid file names are: 

hello.c 

program.c 

ebgl.c 

The file created with the help of text editor, either ed or vi.  The command for calling the editor 

and creating the file is  
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ed filename 

If the file existed before, it is loaded.  If it does not yet exist, the file has to create so that it is 

ready to receive the new program.  Any corrections in the program are done under the editor.  

(The name of your system’s editor may be different.  Check your system; manual)  

When the editing is over, the file is saved on disk.  It can then be referenced any time later by its 

file name.  The program that is entered into the file is known as the source program, since it 

represents the original form of the program.   

System Ready 

Program Code   Enter Program  

Source Program 

       Edit  

Source program 

 

C Compiler         Compile 

Source Program 

Syntax Errors?        Yes 

     No                Object Code 

System Library        Link with  

             System Library 

Executable object Code 

Input Data    Execute object code  

         Data error  logic and Data    Logic Error 
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    Errors ? 

Noerrors 

    CORRECT OUT PUT 

      Stop 

Fig 1.10 Process of compiling and running a C program 

COMPILING AND LINKING  

Let us assume that the source program has been created in a file named ebg1.c.  Now the 

program is ready for compilation.  The compilation command to achieve this task under UNIX is 

cc ebgl.c    

     The source program instructions are now translated into a form that is suitable for execution 

by the computer.  The translation is done after examining each instruction for its correctness.  If 

everything is alright, the compilation proceeds silently and the translated program is stored on 

another file with the name ebg1.o.  This program is known as object code. 

     Linking is the process of putting together other program files and functions that are required 

by the program.  For example, if the program is using exp( ) function, then the object code of this 

function should be brought from the math library of the system and linked to the main program.  

Under UNIX, the linking is automatically done (if no errors are detected) when the cc command 

is used. 

If any mistakes in the syntax and semantics of the language are discovered, they are listed 

out and the compilation process ends right there.  The errors should be corrected in the source 

program with the help of the editor and the compilation is done again. 

     The compiled and linked program is called the executable object code and is stored 

automatically in another file named a.out. 

    Note that some systems use different compilation command for linking mathematical 

functions. 
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cc filename – l 

is the command under UNIPLUS SYSTEM V operating system. 

Executing the program 

Executing is simple task.   The command 

                                                         a.out 

would load the executable object code into the computer memory and execute the instructions.  

During execution, the program may request for some data to be entered through the keyboard.  

Sometimes the program does not produce the desired results.   Perhaps, something is wrong with 

the program logic or data.  Then it would be necessary to correct the source program or the data.  

In case the source program is modified, the entire process of compiling, linking and executing 

the program should be repeated.   

Creating Your Own Executable File:   

 Note that the linker always assigns the same name a.out.  when  we compile another 

program, this file will be overwritten by the executable object code of the new program.  If we 

want to prevent from happening, we should rename the file immediately by using the command.   

mv. a.out name  

     We may also achieve this by specifying an option in the cc command as follows: 

This will store the executable object code in the file name and prevent the old file a.out from 

being destroyed.   

Multiple Source Files 

To compile and link multiple source program files, we must append all the files names to the cc 

command.   

cc filename-1.c..filename-n.c 

     These files will be separately compiled into object files called 
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filename-i.o 

and then linked to produce an executable program file a.out as shown in fig 1.11. 

     It is also possible to compile each file separately and link them later.  For example, the 

commands 

cc –c mod1.c 

cc –c mod2.c 

Will compile the source files mod1.c and mod2.c into objects files mod1.o and mod2.o.  they can 

be linked together by the command cc mod1.o mod2.o 

                 .C                               .C                                  .C 

      Compiler and preprocessor 

                 O                                 .O              .O      library 

                                  a.out                                                         linker 

                                Fig 1.11 compilation of multiple files 

We may also combine the source files and object files as follows: 

cc mod1.c mod2.o 

     Only mod1.c is compiled and then linked with the object file mod2.o.  this approach is  useful 

when one of the multiple source files need to be changed and recompile or an already existing 

object files is to be used along with the program to compiled. 

1.12 MS-DOS SYSTEM 

 The program can be cre3ated using any word processing software IN NON-

DOCUMENT MODE.  THE FILE NAMED SHOULD END WITH THE CHARACTERS.  “c” 

like  program.c, pay.c,etc.  Then the command 

MSC pay.c 
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Under MS-DOS operating system would load the program stored in the file pay.c and generate 

the object code.  This code is stored in another file under name pay.obj.  in case any language 

errors are found, the compilation is not completed.  The program should then be corrected and 

compiled again.  

     The linking is done by the command 

LINK pay.obj 

Which generates the executable code with the filename pay.exe?  now the command  

Pay 

Would execute the program and give the results. 

2 CONSTANTS, VARIABLES, AND DATA TYPES 

KEY TERMS 

Identifiers, constant, String constant, Variable, Scanf 

2.1 INTRODUCTION 

A programming language is designed to help process certain kinds of data consisting of 

numbers, characters and strings and to provide useful output known as information.  The task of 

processing of data is accomplished by executing a sequence of precise instructions called a 

program. These instructions are formed using certain symbols and words according to some rigid 

rules known as syntax rules (or grammar).  Every program instruction must confirm precisely to 

the syntax rules of the language.   

      Like any other language, C has its own vocabulary and grammar.  In this chapter, we will 

discuss the concepts of constants and variables and their types as they relate to C programming 

language. 

2.2 CHARACTER SET 

The characters that can be used to form words, numbers and expressions depend upon the 

computer on which the program is run.  However,  a subset of characters is available that can be 
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used on most personal, micro, mini and mainframe computers.  The characters in C are grouped 

into the following categories: 

1. Letters 

2. Digits 

3. Special characters 

4. White spaces 

The entire character set is given in table 2.1. 

The compiler ignores white spaces unless they are a part of a string constant.  White spaces may 

be used to separate words, but are prohibited between the characters of keywords and identifiers.   

Trigraph Characters 

Many non-English keyboards do not support all the characters mentioned in Table2.1.  

ANSI C introduces the concept of “trigraph” sequences to provide a way to enter certain 

characters that are not available on some keyboards.  Each trigraph sequence consists of three 

characters (two question marks followed by another character) as shown in Table 2.2. For 

example, if a keyboard does not support square brackets, we can still use them in a program 

using the trigraphs??(and??). 
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Table 2.1 C Character Set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Letters         Digits     

  

Uppercase  A……Z      All deciŵal digits 0…….9 

Lowercase a……..z         

                                                                    Special characters 

 , comma      & ampersand 

 . Period       ^ caret 

; Semicolon       * asterisk 

: Colon        – minus sign 

?question mark      + plus sign 

͚Apostrophe       < opening angle bracket 

“QuotatioŶ ŵark      (or less than sign) 

! Exclamation mark      > closing angle bracket 

| Vertical bar       (or greater than sign) 

/ slash        (left parenthesis 

\ Back slash       ) right parenthesis 

~tilde        [left bracket 

_under score       ] right bracket 

$ dollar sign       {left brace 

% percent sign       } right brace 

# Number sign 
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Table 2.2 ANSI C trigraph sequences 

 

 

 

 

 

 

 

 

 

 

2.3 C TOKEN 

 In a passage of text, individual words and punctuation marks are called tokens.  

Similarly, in a C program the smallest individual units are known as C tokens.  C has six types of 

tokens as shown in Fig.2.1. C programs are written using these tokens and the syntax of the 

language. 

White spaces 

Blank space  

Horizontal tab 

Carriage return 

New line  

Form feed 

Trigraph sequence       Translation 

??=         # number sign 

??(          [left bracket 

??) ]         right bracket 

??<         {left brace 

??>         } right brace 

??!         |Vertical bar 

??/          \ back slash 

??/         ^ caret 

??-          ~tilde 
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                                                            C TOKENS 

 

 

           Keywords      constants                                              strings              operators 

               Float                           -15.5                “ABC”                    +   - 

              While                            100                                                           “year                      *   , 

 

 

           Identifiers                                                            special symbols 

                          main                                                                            [] 

                          amount                                                                       {} 

2.4 KEYWORDS AND IDENTIFERS 

 Every C word is classified as either a keyword or an identifier.  All keywords have 

fixed meanings and these meanings cannot be changed.  Keywords serve as basic building blocks 

for program statements.  The list of all keywords of ANSI C is listed in Table 2.3. All keywords 

must be written lowercase.  Some compilers may use additional keywords that must be identified 

form the C manual. 

NOTE: C99 adds some more keywords; see the Appendix “C99 Features”. 
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Table 2.3 ANSI C KEYWORD 

 

 

 

 

 

 

 

Identifiers refer to the names of variables, functions and arrays.  These are user-defined 

names and consist of a sequence of letters and digits, with a letter as a first character.  Both 

uppercase and lowercase letters are permitted, although lowercase letters are commonly used.  

The underscore character is also permitted in identifiers.  It is usually used as a link between two 

words in long identifiers.   

Rules for identifiers 

1. First character must be an alphabet (or underscore). 

2. Must consist of only letter, digits or underscore. 

3.  Only first 31 characters are significant. 

4. Cannot use a keyword. 

5. Must not contain white space. 

2.5 CONSTANTS 

 Constants in C refer to fixed values that do not change during the execution of a 

program.  C supports several types of constants as illustrated in fig 2.2. 

 

 

Auto     double     int    struct 

Break     else     long    switch 

Char     extern    return    union 

Const      float     short    unsigned 

Continue     for               signed    void 

Default      goto     sizeof    volatile 

Do      if     static     while 
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INTEGER CONSTANTS 

 An integer constant refers to a sequence of digits.  There are three types of integers, 

namely, decimal, integer, octal integer and hexadecimal integer.  

     Decimal integers consist of a set of digits, o through 9, preceded by an optional – or + sign. 

Valid examples of decimal integer constants are: 

                                                  123   -321   0    654321     +78 

     CONSTANTS 

 

 Numeric constants                                                  character constants  

 

Integer                                             real                     single character                   string                                       

Constants       constants             constants                             constants 

 

Embedded spaces, commas, and non-digit characters are not permitted between digits. For 

example                     15 750 20,000 $1000 

are illegal. 

NOTE: ANSI C supports unary plus which was not defined earlier. 

 An octal integer constant consists of any combination of digits from the set 3 through 

7, with a leading 0.  Some examples of octal integer are: 

    037   0   0435   05511 

A sequence of digits preceded by ox or oX is considered as hexadecimal integer.  They may also 

include alphabets A through F or a through f.  The letter A through F represents the number 10 

through 15.  Following are examples of valid hex integers: 
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                                                0X2   0x9F   0Xbcd   0x 

We rarely use octal and hexadecimal numbers in programming. 

The largest integer value that can be stored is machine-dependent.  It is 32767 on 16-bit 

machines and 2,147,483,647 on 32-bit machines.  It is also possible to store larger integer 

constants on these machines by appending  qualifiers such as U,L and UL  to the constants.  

Examples: 

  56789U   or 56789u   (unsigned integer) 

  98761234UL   or 98761234ul   (unsigned integer) 

  9876543L   or 9876543I   (long integer) 

The concepts of unsigned and long integers are discussed in detail in section 2.7. 

PROGRAM 2.1:  Representation of integer constants on a 16- bit computer. 

 The program in fig 2.3 illustrates the use of integer constants on a 16-bit machine.  The output in 

Fig 2.3 shows that the integer values larger than 32767 are not properly stored on a 16-bit 

machine.  However, when they are qualified as long integer (by appending L), the values are 

correctly stored.   

Program 

    main( ) 

{ 

 printf(“integer values\n\n”); 

 printf(“%d %d\n”, 32767, 32767+,32767+10); 

 printf(“\n”); 

 printf(“Long integer values\n\n”); 

 printf(“%1d %1d\n”, 32767L,3276L+1L,32767L+10L); 
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} 

Output: 

 Integer values 

 32767  -32768  -32759 

 Long integer values 

 32767   32768   3777 

Fig 2.3: Representation of integer constants on 16-bit machine 

Real constants 

 Integer numbers are inadequate to represent quantities that vary continuously.  Such as 

distance, heights, temperatures, prices, and so on.  These quantities are represented by numbers 

containing fractional parts like 17.548.  Such numbers are called real (or floating point) 

constants.  Further examples of real constants are: 

       0.0083  -0.75  435.36  +247.0 

These numbers are shown in decimal notation, having a whole number followed by a decimal 

point and the fractional part.  It is possible to omit digits before the decimal point, or digits after 

the decimal point.  That is,  

    215.  .95   -.71   +.5 

are all valid real numbers. 

 A real number may also be expressed in exponential (or scientific)notation. For example, 

the value 215.65 may be written as 2.1565e2 in exponential notation.  e2 means multiply by 102.  

The general for is: 

    mantissa e exponent 

     The mantissa is either a real number expressed in decimal notation or an integer.  The 

exponent is an integer number with an optional plus or minus sign.  The letter e separating the 
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mantissa and the exponent can be written in either lowercase or uppercase.  “Since the exponent 

causes the decimal point to “float”, this notation is said to represent a real number in floating 

point form.  Examples of legal floating-point constants are: 

0.65d4   12e-2   1.5e+5   3.18E3   -1.2E-1 

Embedded white space is not allowed.   

Exponential notation is useful for representing numbers that are either very large or very small in 

magnitude.  For example, 7500000000 may be written as 7.5E9 or 75E8.  Similarly, -

0.000000368 is Floating-point constants are normally represented as double-precision quantities.  

However, the suffixes f or F may be used to force single – precision and I or L to extend double 

precision further.  Some examples of valid and invalid numeric constants are given in table 2.4. 

Table 2.4: Examples of Numeric constants 

 

 

 

 

 

 

 

 

 

 

 

 

   CONSTANT    VALID?     REMARKS 

698354L    Yes    represents long integer 

25,000     No    Comma is not allowed 

+5.0E3     Yes    (ANSI C supports unary plus) 

3.5e-5     Yes  

7.1e 4     No     No white space is permitted 

-4.5e-2     Yes  

1.5E+2.5    No    Exponent must be an integer 

$255     No    $ symbol is not permitted 

0X7B     Yes    Hexadecimal integer 
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Single Character Constants 

 A single character constant (or simply character constant) contains a single character 

enclosed within a pair of single quote marks.  Example of character constants are: 

‘5’  ‘X’  ‘,’  ‘’ 

Note that the character constant ‘5’ is not the same as the number 5.  The last constant is a blank 

space. 

Character constants have integer values known as ASCII Values.  For example, the statement 

     printf(“%d”, ‘a’); 

Would print the number 97, the ASCII Value of the letter a.  Similarly, the statement 

     printf(“%c”, ‘97’); 

would out the letter ‘a’.  ASCII values for all characters are given in appendix II. 

Since each character constant represents an integer value, it is also possible to perform arithmetic 

operations on character constants.  They are discussed in chapter 8. 

String constants 

 A string constant is a sequence of characters enclosed in double quotes.  The characters 

may be letter, numbers, special characters and blank space.  Example is: 

                                      “Hello!” “1987” “WELLDONE” “?...!” “5+3” “X” 

     Remember that a character constant (e.g., ‘X’) is not equivalent to the single character string 

constant (e.g., “X”).  Further, a single character string constant does not have an equivalent 

integer value while a character constant has an integer value.  Character strings are often used in 

programs to build meaningful programs.   

BACKSLASH CHARACTER CONSTANTS 

 C supports some special backslash character constants that are used in output functions.  

For example, the symbol ‘\n’ stands for newline character.  A list of backslash character 
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constants is given in table 2.5.  Note that each one of them represents one character, although 

they consist of two characters.  These characters combinations are known as escape sequences. 

                                   Constant                                          meaning 

‘\ a‘                audible alert (bell) 

‘\ b’     back space 

‘\f ‘     form feed 

‘\n ‘     new line 

‘\r‘     carriage return 

‘\ t‘     horizontal tab 

‘\v ‘     vertical tab 

‘\’ ‘     single quote 

‘\’’’     double quote 

‘\’’’     double quote 

‘\?’     question mark 

‘\\’       backslash 

‘\0’      null 

 

Table.2.5 

  

2.6 VARIABLES 

A variable is a data name that may be used to store a data value. Unlike constants that 

remain unchanged during the execution of a program, a variable may take different values at 

different times during execution.  In chapter 1, we used several variables.  For instance, we used 
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the variable amount in sample program 3 to store the value of money at the end of each year 

(after adding the interest earned during that year). 

     A variable name can be chosen by the programmer in a meaningful way so as to reflect its 

function or nature in the program.  Some examples of such names are: 

average 

height 

 total  

counter_1  

class_strength 

As mentioned earlier, variable names may consist of letters, digits, and the underscore(_) 

character, subject to the following conditions: 

1. They must begin with a letter.  Some systems permit underscore as the first character. 

2. ANSI standard recognizes a length of 31 characters.  However, length should not be 

normally more than eight characters, since only the first eight characters are treated as 

significant by may compilers.  (In C99, at least 63 characters are significant.) 

3. Uppercase and lowercase are significant.  That is, the variable Total is not the same as 

total or TOTAL. 

4. It should not be a keyword. 

5. White space is not allowed. 

Some examples of valid variable names are: 

John    Value    T_raise 

Delhi    x1    ph_value 

Mark    sum1    distance 
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Invalid examples include: 

123    (area) 

%    25th  

Further examples of variable names and their correctness are given in Table 2.6. 

Table 2.6 Examples of Variable Names 

 

 

 

 

 

 

 

 

 

 

 

If only the first eight characters are recognized by a compiler, the the two names  

Average_height 

Average_weight 

Mean the same thing to the computer.  Such names can be rewritten as 

Variable name    valid  ?   Remark 

First_tag    valid  

Char                  Not valid    char is a keyword 

Price$     Not valid    Dollar sign is illegal 

Group one    Not valid    Blank space is not                      

                                                                                                                    Permitted   

average_number   valid     First eight characters  

                                                                                                                     are significant 

int_type    Valid     Keyword may be part of a        

                                                                                                                                    name    
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avg_height and avg_weight 

Or  

.ht_average and wt_average 

Without changing their meanings.  

2.7 DATA TYPES 

 C Language is rich in its data types.  Storage representations and machine instructions to 

handle constants differ from machine to machine.  The varieties of data types available allow the 

programmer to select the type appropriate to the needs of the application as well as the machine.   

ANSI C supports three classes of data types: 

1. Primary (or fundamental) data types 

2. Derived data types 

3. User-defined data types 

 The primary data types and their extensions are discussed in this section.  The user-defined 

data types are defined in the next section while the derived data types such as arrays, functions, 

structures and pointers are discussed as and when they are encountered. 

      All C compilers support five fundamental data types, namely integer (|int), character 

(char), floating point (float), double-precision floating point (double) and void.  Many of them 

also offer extended data types such as long int and long double.  Various data types and the 

terminology used to describe them are given.  Fig2.4. the range of the basic four types is given in 

table2.7.  we discuss briefly each one of them in this section. 

NOTE: C99 adds three more data types, namely _Bool,_Complex, and _Imaginary.  See the  

Appendix”C99 Features” 
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INTEGRAL TYPE INTEGRAL TYPE 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.4 primary dat types in C 

Table 2.7 Size and Range of Basic Data types on 16-bit machine 

 

 

 

 

 

 

PRIMARY DATA TYPES 

     INTEGRAL TYPE 

 INTEGER 

 SIGNED          UNSIGNED TYPE 

Int       unsigned int 

Short int    unsigned short int 

Long int    unsigned long int 

CHARACTER 

 

Char 

Signed char  

Unsigned char 

Floating pont type 

Float   double  long double 

Void 

                     Data type      Range of Values 

                     Char      -128 to 127 

                     Int       -32768 to 32767 

                     Float      3.4e-38 to 3.4e+e38 

                     Double      1.7e-308 to 1.7e+308 
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INTEGER TYPES 

 Integers are whole numbers with a range of vaules supported by a particular machine.  

Generally, integers occupy one word of storage, and since the word sizes of machines vary 

(typically, 16 or 32 bits) the size of an integer that can be stored depends on the computer.  If we 

use a 16 bit word length, the size of the integer value is limited to the range -32768 

to+32767(that is, -215to +215-1).  A signed integer uses one bit for sign and 15 bits for the 

magnitude of the number.  Similarly, a 32 bit word length can store an integer ranging from -

2,147,483,648 to 2,147,483,647.   

In order to provide some control over the range of numbers and storage space, C has three 

classes of integer storage, namely short int , int, andlong  int, in both signed and unsigned form.  

ANSI C defines these types so that they can be organized from the smallest to the largest, as 

shown in Fig.2.5 For example, short int represents fairly small integer values and requires half 

the amount of storage as regular int number uses.  Unlike signed integers, unsigned integers use 

all the bits for the magnitude of the number and are always positive.  Therefore,for a 16-bit 

machine, the range of unsigned integer numbers will be from 0to 65,535.  

 We declare long and unsigned integers to increase the range of values.  The use of qualifier 

signed on integers is optional because the default declaration assumes a signed number.  Table 

2.8 shows all the allowed combinations of basic tyhpes and qualifiers and their size and range on 

a 16-bit machine. 

 

 

 

 

 

 

 

            Short int 

        int 

          Long int 
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Table 2.8 Size and Range of Data Types on a16-bit machine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Floating Point Types 

Floating point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), 

with 6 digits precision.   Floating point numbers are defined in C by the keyword float.  When 

the accuracy provided by a float number is not sufficient, the type double data type number uses 

Type      size (bits)    range 

char or signed char    8     -128 to 127 

unsigned char     8     0 to 255 

int or signed int    16     -32,768 to 32,767 

unsigned  int     16     0 to 65535 

short int or 

signed short int     8     -128 to 127 

unsigned short int   8     0 to 255 

long int or 

signed long int     32     -2,147,483,648 to 

2,147,483,647 

 

unsigned long int    32     0 to 4,294,967,295 

float      32     3.4E -38/ to 3.4E+38 

double   64    1.7E-308 to 

                                                                                                                                                 1.7E+308 

long double    80     3.4E-4932 to 

1.1E+4932 
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64  bits giving a precision of 14 digits.  These are known as double precision numbers;  

Remember that double type represents the same data type that float represents, but with a greater 

precision.  To extend the precision further, we may use long double which uses 80 bits.  The 

relationship among floating types is illustrated 2.6 

 

  

 

2. 8 Declaration of variables 

 After designing suitable variable names, we must declare them to the compiler.  Declaration 

does two things: 

1. It tells the compiler what the variable name is. 

2. It specifies what type of data the variable will hold. 

The declaration of variables must be done before they are used in the program. 

Primary Type Declaration 

 A variable can be used to  store a value of any data type.  That is, the name has nothing to 

do with its type.  The syntax for declaring a variable is as follows: 

   Data - type v1,v2,...,vn 

v1,v2,vn are the names of variables.  Variables are separated by commas.  A declaration must 

end with a semicolon.  For example, valid declarations are: 

   int count; 

   int number, total; 

   double ratio; 

int and  double are the keywords to represent integer type and real type data values respectively.  

Table 2.9 shows various data types and their keyword equivalents. 

float  

    double 

      long double 



45 

 

Table 2.9 Data Types and Their Keywords 

 

Type      size(bits)    range 

char or signed char    8     -128 to 127 

unsigned char     8     0 to 255 

int or signed int    16     -32,768 to 32,767 

unsigned  int     16     0 to 65535 

short int or 

signed short int     8     -128 to 127 

unsigned short int   8     0 to 255 

long int or 

signed long int     32     -2,147,483,648 to 

2,147,483,647 

 

unsigned long int    32     0 to 4,294,967,295 

float      32     3.4E -38/ to 3.4E+38 

double   64    1.7E-308 to 

                                                                                                                                                 1.7E+308 

long double    80     3.4E-4932 to 

1.1E+4932 

 

 

 

 

        The program segment given in Fig.2.7 illustrates declaration variables.  main( ) is the 

beginning of the program.  The opening brace{ signals the execution of the program.  

Declaration of variables is usually done immediately after the opening brace of the program.  

The variables can also be declared outside (either before or after) the main function.  The 

importance of place of declaration will be dealt in detail later while discussing functions.   

Note:   

C99 permits declaration of variables at any point within a function or block, prior to their use. 
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                                     main( ) /*………….program name………….*/ 

                                         { 

                                              /*………….declaration………….*/ 

 float         x, y; 

 int            code; 

 shor   tint  count; 

 long int   amount; 

 double   deviation; 

 unsigned   n; 

 char   c; 

 /*………….computation………….*/ 

 . …………. 

 …………. 

 ………….                                              

} 

 /*………….program ends………….*/ 

 Fig 2.7 Declaration of variables 

     When an adjective (qualifier) short, long, or unsigned is used without a basic data type 

specifier, C compilers treat the data type as an int.  If we want to declare a character variable as 

unsigned, then we must do so using both the terms like unsigned char. 
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Default values of Constants 

 Integer constants, by default, represent int type data.  We can override this default by 

specifying unsigned or long after the number (by appending U or L) as shown below: 

Literal   Type   Value 

+111   int    111 

-222   int    -222 

45678U    unsigned int   45,678 

-56789L    unsigned int   -56,789 

987654UL    unsigned long int  9,87,6564 

Similarly, floating point constants, by default represent double type data.  If we want the 

resulting data type to be float or long double, we must append the letter f or F to the number for 

float and letter I or L for long double as shown below: 

Literal   Type    Value 

0.  Double   0.0 

.0   double   0.0 

12.0   double    12. 

1.234   double    1.234 

-1.2f   float    -1.2 

1.23456789L   long double   1.23456789 

USER-DEFINED TYPE DECLARATION 

 C supports a feature known as “known definition” that allows users to define an identifier 

that would represent an existing data type.  The user-defined data type identifier can later be used 

to declare variables.  It takes the general form: 
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 typedef  type identifier; 

     Where type refers to an existing data type and “identifier” refers to the “new” name given to 

the data type.  The existing data type may belong to any class of type, including the user-defined 

ones.  Remember that the new type is ‘new’ only in the name, but not the data type.  typedef 

cannot create a new type.  Some examples of type definition are: 

 typedef int units; 

 typedef float marks; 

     Here, units symbolize int and marks symbolizes float.  They can be later used to declare 

variables as follows: 

 units batch1, batch2; 

 marks name1[50],  name2[50]; 

Batch1 and batch2 are included as int variable and name1[50] and name2[50] are declared as 50 

element floating point array variables.  The main advantage of typedef is that we can create 

meaningful data type names for increasing the readability of the program.   

     Another user-defined data type is enumerated dta type provided by ANSI standard.  It is 

defined as follows: 

 enum identifer {value1, value 2, ..valuen}; 

     The “identifier” is a user-defined enumerated data type which can be used to declare variables 

that can have one of the values enclosed within the braces (known as enumeration constants).  

After this definition, we can declare variables to be of this ‘new’ type as below: 

 enum identifier v1, v2, …,vn; 

The enumerated variables v1, v2,…,vn can only have one of the values value1, value2,…valuen. 

The assignments of the following types are valid: 

 v1 = value3; 
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 v5 = value1; 

An example: 

 enum day {Monday,Tuesday,…Sunday}; 

 enum day week_st, week_end; 

 week_st = Monday; 

 week_end = Friday; 

 if(week_st == Tuesday) 

 week_end = Saturday; 

     The compiler automatically assigns integer digits beginning with o to all the enumeration 

constants.  That is, the enumeration constant value 1 is assigned 0, value2 is assigned 1, and so 

on.  However, the automatic assignements can be overridden by assigning values explicitly to the 

enumeration constants.  For example 

 enum day {Monday,Tuesday,…Sunday}; 

    Here the constatnt Monday is assigned the value of 1.  The remaining constants are assigned 

values that increase successively by 1. 

     The definition and declaration of enumerated variables can be combined in one statement.  

Example: 

 enum day {Monday,Tuesday,…Sunday}  week_st, week_end; 

2.9 DECLARATION OF STORAGE CLASS 

Variables in C can have not only data type nut also storage class that provides information about 

their location and visibility.  The storage class decides the portion of the program within which 

the variables are recognized.  Consider the following example: 

 /* Example of storage classes */ 

 int m; 
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 main( ) 

 { 

 int i; 

 float balance; 

 ………. 

 ………. 

 function1( ); 

 } 

 function( ) 

 { 

 int i; 

 float sum; 

 ……….. 

 ……….. 

} 

 The variable m which has been declared before the main is called global variable.  It can be 

used in all the functions in the program.  It need not be declared in other functions.  A global 

variable is also known as an external variable.  

     The variables i, balance and sum are called local variables because they are declared inside a 

function.  Local variables are visible and meaningful only inside the functions in which they are 

declared.  They are not known to other function.  Note that the variable i has been declared in 

both the function.  Any change in the value of i in one function does not affect its value in the 

other. C provides a variety of storage class specifies that can be used to declare explicitly the 
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scope and lifetime of variables.  The concepts of scope and lifetime are important only in 

multifunction and multiple file programs and therefore the storage classes are considered in 

detail later when functions are discussed.  For now, remember that there are four storage class 

specifiers (auto, register, static, and extern) whose meanings are given in table 2.10 

     The storage class is another qualifier (like long or unsigned) that can be added to avariable 

declaration as shown below: 

auto int count; 

register char ch; 

static int x; 

extern long total; 

Static and external (extern) variables are automatically initialized to zero.  Automatic (auto) 

variables contin undefined values (known as ‘garbage’) unless they are initialized explicitly. 

Table 2.10 Storage Classes and their meaning 

 

 

 

   

 

 

2.10 ASSIGNING VALUES TO VARIABLES 

Variables are created for use in program statements such as, 

value = amount + inrate * amount; 

While (year <= PERIOD) 

Storage class  meaning 

auto  local variable known only to the function in which it is declared.   

                                                   Default is auto. 

static   local variable which exists and retains its value even after the    

                                                   control is transferred to the  calling function. 

extern  global variable known to all functions in the file. 

register  local variable which is stored in the register. 



52 

 

{ 

…………. 

…………. 

year = year + 1; 

} 

      In the first statement, the numeric value stored in the variable inrate is multiplied by the 

value stored in amount and the product is added to amount.  The result is stored in the variable 

value.  This process is possible only if the variables amount and inrate have already been given 

values.  The variable value is called the target variable.  While all the variables are declared for 

their type, the variables that are used in expressions (on the right side of equal (=) sign of a 

computational statement) must be assigned values before they are encountered in the program.  

Similarly, the variable year and the symbolic constant PERIOD in the while statement must be 

assigned values before this statement is encountered. 

Assignment Statement 

Values can be assigned to variables using the assignment operator = as follows: 

variable_name = constant; 

We have already used such statements in chapter 1.  Further example are: 

initial_value = 0; 

final_value = 100; 

balance = 75.84; 

yes = ‘x’;  

     C permits multiple assignments in one line.  For example 

initial_value = 0; final_value = 100; 
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are valid statements. 

      An assignment statement implies that the value of the variable on the left of the ‘equal 

sign’ is set equal to the value of the quantity (or the expression) on the right.  The statement 

year = year + 1; 

means thats the ‘new value’ of year is equal to the ‘old value’ of year plus 1.   

      During assignment operation, C converts the type of value on the right-hand side to the 

type on the left.  This may involve truncation when real value is converted to an integer.   

     It is also possible to assign a value to a variable at the time the variable is declared.  This 

takes the following for: 

data-type variable_name = constant; 

Some examples are: 

int final_value = 100; 

char yes =’x’; 

double balance =75.84; 

      The process of giving initial values to variables is called initialization.  C permits the 

initialization of more than one variable in one statement using multiple assignment operators.  

For example the statements  

p = q= s =0; 

x = y =z= MAX; 

are valid.  The first statement initializes the variables p, q, and s to zero while the second 

initializes x, y, and z with MAX. Note that MAX is a symbolic constant defined at the beginning.   

Remember that external and static variables are initialized to zero by default.  Automatic 

variables that are not initialized explicitly will contain garbage.  
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Program 2.2: program in Fig.2.8 shows typical declarations, assignments and values stored in 

various types of variables. 

The variables x and p have been declared as floating-point variables.  Note that the way 

the value of 1.234567890000 that we assigned to x is displayed under different output formats.  

The value of x is displayed as 1.234567880630 under %.12If format, while the actual value 

assigned is 1.234567890000.  This is because the variable x has been declared as afloat that can 

store values only up to six decimal place. 

     The variable m that has been declared as int is not able to store the value 54321 correctly.  

Instead, it contains some garbage.  Since this program was run on a 16-bit machine, the 

maximum value that an int variable can store is only 32767.  However, the variable k (declared 

as unsigned) has stored the value 54321 correctly.  Similarly, the long int variable n has stored 

the value 1234567890 correctly. 

     The value 9.87654321 assigned to y declared as double has been stored correctly but the 

value is printed as 9.876543 under %If format.  Note that unless specified otherwise, the printf 

function will always display a float or double value to six decimal place.  We will later the 

output formats for displaying numbers. 

Program 

main( ) 

{ 

/*…………………..Declarations…………………..*/ 

float  x,p; 

double y,q; 

unsigned k; 

/*…………………..declartions and assignemnts…………………..*/ 

int  m =54321 ; 
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long int n = 1234567890 ; 

/*…………………..ASSIGNMENTS…………………..*/ 

x = 1.234567890000 ; 

y = 9.87654321 ; 

k = 54321 ; 

p = q= 1.0 ; 

/*…………………..PRINTING…………………..*/ 

printf(“m = %d\n”, m) ; 

printf(“n  = %1d\n”, n) ; 

printf(“x = %.121f\n”, x) ; 

printf(“x = %f\n”, x) ; 

printf(“y = %.121f\n”,y) ; 

printf(“y = %1f\n”, y) ; 

printf(“k = %u p = %f q = %.121f\n”, k, p, q) ; 

} 

Output  

m = -11215 

n = 1234567890 

x = 1.234567880630 

x = 1.234568 

y = 9.876543210000 
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y = 9.876543 

k = 54321 p = 1.000000q = 1.000000000000 

Fig 2.8 examples of assignments 

Reading Data from Keyboard 

Another way of giving values to variables is to input data through keyboard using the 

scanf function.  It is a general input function available in C and is very similar in concept to the 

printf function.  It works much like an INPUT statement in BASIC.  The general format of scanf 

is as follows: 

scanf(“control string”, &variable1,&variable1,&variable2,….); 

      The control string contains the format of data being received.  The ampersand symbol & 

before each variable name is an operator that specifies the variable name’s address.  We must 

always use this operator, otherwise unexpected results may occur.  Let us look at an example: 

scanf(“%d”, &number); 

      When this statement is encountered by the computer, the execution stops and waits for 

the value of the variable number to be typed in.  Since the control string “%d” specifies that an 

integer value is to be read from the terminal, we have to type in the value in integer form.  Once 

the number is typed in and ‘Return’ Key is pressed, the computer then proceeds to the next 

statement.  Thus, the use of scanf provides an interactive e feature and makes the program ‘user 

friendly’.  The value is assigned to the variable number. 

Program 2.3 The program in Fig 2.9 illustrates the use of scanf function. 

The first executable statement in the program is a printf, requesting the user to enter an 

integer number.  This is known as “prompt message” and appears on the screen like  

Enter an integer number 

As soon as the user types in an integer number, the computer proceeds to compare the value with 

100.  If the value typed in is less than 100, then a message 
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Your number is smaller than 100 

is printed on the screen.  Otherwise, the message 

Your number contains more than two digits 

is printed.  Outputs of the program run for two different inputs are also shown in fig 2.9. 

program 

main( ) 

{ 

int number; 

printf(“Enter an integer number\n”); 

scanf (“%d”, &number); 

if (number < 100 ) 

printf(“Your number is smaller than 100\n\m”); 

else  

printf(“your number contains more than two digits\n”); 

} 

Output 

Enter an integer number 

54 

Your number is smaller than 100 

Enter an integer number  

108 your number contains more than two digits 
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Fig.2.9 use of scanf function for interactive computing 

Some compilers permit the use of the prompt message as a part of the control string in scanf,like  

Scanf(“Enter a number %d”,&number); 

We discuss more about scanf in chapter 4. 

In Fig 2.9 we have used a decision statement if…..else to decide whether the number is less than 

100. Decision statements are discussed in depth in chapter 5. 

2.11 DEFINING SYMBOLIC CONSTANTS 

We often use certain unique constants in a program.  These constants may appear 

repeatedly in a number of places in the program.  One example of such a constant is 3.142, 

representing the value of the mathematical constant ”pi”.  Another example is the total number of 

students whose mark-sheets are analyzed by a ‘test analysis program’.  The number of students, 

say 50, may be used for calculating the class total, class average, standard deviation, etc.  we face 

two problems in the subsequent use of such programs.  These are 

1. Problem in modification of the program and 

2. Problem in understanding the program. 

Modifiability 

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy 

of calculations or the number 50 to 100 to process the test results of another class.  In both the 

cases, we will heve to search throughout the program and explicitly change the value of the 

constant wherever it has been used.  If any value is left unchanged, the program may produce 

disastrous outputs. 

Understandability 

When a numeric value appears in a program, its use is not always clear, especially when 

the same value means different things in different places.   For example, the number 50 may 

mean the number of students at one place and the ‘pass marks’ at another place of the same 
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program.  We may forget what a certain number meant, when we read the program some days 

later. 

    Assignment of such constants to a symbolic name frees us from these problems.  For example, 

we may use the name STRENGTH to define the number of  students and PASS_MARK to 

define pass marks required in a subject.  Constant values are assigned to these names at the 

beginning of the program.  Subsequent use of the names STRENGTH AND PASS_MARK in 

the program has the effect of causing their defined values to be automatically substituted at the 

appropriate points.  A constant is defined as follows: 

#define symbolic_name value of constant 

Valid examples of constant definitions are: 

#define STRENGTH 100 

#define PASS_MARK 50 

#define MAX 200 

#define PI 3.14159 

Symbolic names are sometimes called constant identifiers.  Since the symbolic names are 

constants (not variables), they do not appear in declarations.  The following rules apply to define 

statement which defines a symbolic constant: 

1. Symbolic names have the same form as variable names.  (Symbolic names are written in 

CAPITALS to visually distinguish them from the normal variable names, which are 

written in lowercase letter.  This only a convention, not a rule.) 

2. No blank space between the pound sing’#’ and the word define is permitted. 

3. ‘#’ must be the first character in the line. 

4. A blank space is required between #define and symbolic name and between the symbolic 

name and the constant.   

5. #define statements must not end with a semicolon. 

6. After definition, the symbolic name should not be assigned any other value within the 

program by using an assignment statement.  For example, STRENGTH = 200; is illegal;. 
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7. Symbolic names are NOT declared for data types.  Its data type depends on the type of 

constant. 

8. #define statements may appear anywhere in the program but before it is referenced in the 

program (the usual practice is to place them in the beginning of the program). 

#define statement is a preprocessor compiler directive and is much more powerful than what has 

been mentioned here.  More advanced types of definitions will be discussed later.  Table 2.11 

illustrates some invalid statements of #define. 

Table 2.11 Examples of Invalid #define statements 

   

 

 

 

 

 

 

 

 

2.12 DECLARING A VARIBALE AS CONSTANT 

We may like the value of certain variables to remain constant during the execution of a 

program.  We can achieve this by declaring the variable with the qualifier const at the time of 

initialization.  Example: const int class_size = 40; 

const is a new data type qualifier defined by ANSI standard.  This tells the compiler that the 

value of the int variable class_size must not be modified by the program.  However, it can be 

used on the right_hand side of an assignment statement like any other variable. 

2.13 DECLARING A VARIABLE AS VOLATILE 

ANSI standard defines another qualifier volatile that could be used to tell explicitly the 

compiler that variable’s value may be changed at any time by some external sources (from 

outside the program).  For example:  volatile int date: 

Statement      Remark 

#define X=2.5 ‘=’     sign is not allowed 

#define MAX 10     No white space between # and define 

#define N 25;      No semicolon at the end 

#define N 5, M 10    A statement can define only one name 

#define ARRAY     define should be in lowercase letters 

#define PRICE$ 100 $    symbol is not permitted in name 
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The value of date may be altered by some external factors even if it does not appear on 

the left-hand side of an assignment statement.  When we declare a variable as volatile, the 

compiler will examine the value of the variable each time it is encountered to see whether any 

external alteration has changed the value. 

       Remember that the value of a variable declared as volatile can be modified by its own 

program as well.  If we wish that the value must not be modified by the program while it  may be 

altered by some other process, then we may declare the variables as both const and volatile as 

shown below: 

volatile const int location = 100; 

Note: C99 adds another qualifier called restrict.  See the Appendix “C99 Features”. 

2.14 OVERFLOW AND UNDERFLOW OF DATA 

Problem of data overflow occurs when the value of a variable is either too big or too 

small for the data type to hold.  The largest value that a variable can hold also depends on the 

machine.  Since floating-point values are rounded off to the number of significant digits allowed 

(or specified), an overflow normally results in the largest possible real value, whereas an 

underflow results in zero. 

     Integers are always exact within the limits of the range of the integral data types used.  

However, an overflow which is a serious problem may occur if the data type does not match the 

value of the constant.  C does not provide any warning or indication of integer overflow.  It 

simply gives incorrect results. (Overflow normally produces a negative number.)  We should 

therefore exercise a greater care to define correct data types for handling the input/output values. 

Case studies 

1. A program to calculate the average of a set of N numbers is given in Fig.2.11 

Program  

#define  N  10   /* SYMBOLIC CONSTNT*/ 

main() 
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{ 

int count;     /* declaration of variables */ 

float sum, average, number ; 

sum = 0; 

count = 0; 

while (count < n ) 

{ 

scanf(“%f”, &number); 

sum = sum + number; 

count = count + 1; 

} 

average = sum/n; 

printf(“n= %d sum = %f”, n, sum); 

printf(“ average = %f”, average);\ 

} 

Output 

1 

2.3 

4.67 

1.42 

7 
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3.67 

4.08 

2.2 

4.25 

8.21 

N = 10    sum = 38.799999  Average = 3.880 

Fig.2.11 Average of N numbers 

      The variable number is declared as float and therefore it can take both integer and real 

numbers.  Since the symbolic constant N is assigned the value of 10 using the #define statement, 

the program accepts ten values and calculates their sum using the while loop.  The variable count 

counts the number of values and as soon as it becomes 11, the while loop is exited and then the 

average is calculated. 

Notice that the actual value of sum is 38.8 but the value displayed is 38.799999.  in fact, 

the actual value that is displayed is quite dependent on the computer system.  Such an in 

accuracy is due to the way the floating point numbers are internally represented inside the 

computer. 

3 OPERATORS AND EXPRESSIONS 

3.1 INTRODUCTION 

C supports a rich set of built-in operators. We have already used several of them, such as 

=,+,-,*,& and <.  An operator is a symbol that tells the computer to perform certain mathematical 

or logical manipulations. Operators are used in programs to manipulate data and variables. They 

usually form a part of the mathematical or logical expressions. 

 C operators can be classified into a number of categories. They include. 

1. Arithmetic operators  
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2. Relational operators 

3. Logical operators 

4. Assignment operators 

5. Increment and decrement operators 

6. Conditional operators 

7. Bitwise operators 

8. Special operators 

An expression is sequence of operands and operators that reduces to a single value. For example. 

  10 + 15 

is an expression whose value is 25. The value can be any type other than void. 

3.2 ARITHMETIC OPERATORS 

C provides all the basic arithmetic operators. They are listed in Table 3.1, the operators 

+,-,* and / all work the same way as they do in other languages. These can operate on any built-

in type allowed in C. The unary minus operator, in effect. Multiplies its single operand by -1. 

Therefore, a number preceded by a minus sign changes its sign. 

Table 3.1   Arithmetic Operator 

Operator Meaning 

+ 

 

- 

 

* 

 

/ 

 

% 

Addition or unary plus 

 

Subtraction or unary minus 

 

Multiplication 

 

Division 

 

Modulo division 

 



65 

 

Integer division truncates any fractional part.  The modulo division operation products the 

remainder of an integer division. Examples of use of arithmetic operators are: 

    a-b  a+b 

    a*b  a/b  

    a%b  -a*b 

Here a and b are variables and are known as operands. The modulo division operator % cannot 

be used on floating point data. Note that C does not have an operator for exponentiation. Older 

versions of C does not support unary plus but ANSI C supports it. 

Integer Arithmetic 

     When both the operands in a single arithmetic expression such as a+b are integers. The 

expression is called an integer value. The largest integer value depends on the machine, as 

pointed out earlier. In the above examples, if a and b are integers, then for a=14 and b=4 we have 

the following results:  

  a-b = 10  

  a+b = 18 

  a*b = 56 

  a/b = 3 (decimal part truncated) 

  a%b = 2 (remainder of division) 

 During integer division, if both the operands are of the same sign, the result is truncated 

towards zero. If one them is negative, the direction of truncation is implementation dependent.  

That is,  

  6/7 = 0 and -6/-7 = 0 

But -6/7 may be zero or -1. (Machine dependent) 
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 Similarly, during modulo division, the sign of the result is always the sign of the first 

operand (the dividend).  That is  

  -14%3 = -2 

   -14%-3 = -2 

    14%-3 = 2 

Program 3.1 

 The Program in fig.3.1 shows the use of integer arithmetic to convert a given number of 

days into months and days. 

Program 

 main() 

{ 

int months, days; 

printf(‘’Enter days\n’’); 

scanf(‘’%d’’,days); 

months = days/30; 

days = days%30; 

printf(‘’Months = %d Days = %d’’,months,days); 

} 

Output 

Enter days 

265 

Months = 8 days = 25 
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Enter days  

364 

Months = 12 Days = 4 

Enter days 

45 

Months = 1 Days = 15  

Fig.3.1 Illustration of integer arithmetic 

The variables months and days are declared as integers. Therefore, the statement 

   months = days/30 

Truncates the decimal part and assigns the integer part to months. Similarly, the statement 

   days = days%30 

assigns the remainder part of the division to days. Thus the given number of days is converted 

into an equivalent number of months and days and the result is printed a shown in the output. 

Real Arithmetic 

An arithmetic operation involving only real operands is called real arithmetic. A real 

operand may assume values either in decimal or exponential notation. Since floating point values 

are rounded to the number of significant digits permissible, the final value is an approximation of 

the correct result. If x,y, and z are floats, the we will have: 

   x = 6.0/7.0 = 0.857143 

   y = 1.0/3.0 = 0.33333 

   z = -2.0/3.0 = -0.66667 

The operator % cannot be used with real operands. 
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Mixed – mode Arithmetic 

When one of the operands is real and the other is integer, the expression is called mixed – 

mode arithmetic expression. If either operand is of the real type, then only the real operation is 

performed and the result is always a real number. Thus 

   15/10.0 = 1.5 

whereas 

   15/10 = 1 

More about mixed operations will be discussed later when we deal with the evaluation of 

expressions. 

3.3  RELATIONAL OPERATORS 

We often compare two quantities and depending on their relation, take certain decisions 

For example, we may compare the age of two items, and so on. These comparisons can be done 

with the help of relational operators. We have already used the symbol ‘<’ meaning ‘less than’.  

An expression such as 

   a<b or 1<20 

containing a relational operator is termed as a relational expression. The value of a relational 

expression is either one or zero. It is one if the specified relation is true and zero if the relation is 

false. For example  

   10 < 20 is true 

but  

   20 < 10 is false 

C supports six relational operators in all. These operators and their meanings are shown in Table 

3.2 
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Table 3.2 

Operator Meaning 

< 

 

<= 

 

> 

 

>= 

 

== 

 

!= 

is less than 

 

is less than  or equal to 

 

is greater than  

 

is greater than or equal to  

 

is equal to 

 

is not equal to 

 

A simple relational expression contains only one relational operator and takes the following 

form: 

   ae-1 relational operator ae-2 

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or 

combination of them. Given below are some examples of simple relational expressions and their 

values: 

  4.5<= 10 TRUE 

  4.5<-10 FALSE 

  -35>=0 FALSE 

  10<7+5 TRUE 

  a+b = c+d TRUE   only if the sum of values of a and b is equal to the sum of 

values of c and d. 
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When arithmetic expressions are used on either side of a relational operator, the 

arithmetic expressions will be evaluated first and then the results compared. That is, arithmetic 

operators have a higher priority over relational operators. 

Relational expressions are used in decision statements such as if and wghile to decide the 

course of action of a running program. We havbe already used the while statement in chapter 1. 

Decision statements are discussed in detail in Chapter 5 and 6. 

Relational Operator Complements 

Among the six relational operators, each one is a complement of another operator. 

> is complement of  <= 

< is complement of >= 

== is complement of != 

We can simplify an expression involving the not and the less than operators using the 

complements as shown below: 

 Actual one    Simplified one 

 !(x<y)    x>=y 

 !(x>y)    x<=y 

 !(x!=y)    x==y 

 ! (x<=y)   x>y 

 !(x>=y)   x<y 

 !(x==y)   x!=y 

3.4 LOGICAL OPERATORS 

In addition to the relational operators, C has the following three logical operators. 

  &&  meaning logical AND 

  II       meaning logical OR 
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  !   Meaning logical NOT 

The logical operators && and II are used when we want to test more than one condition and 

make decisions. An example is: 

    a > b && x== 10 

 An expression of this kind, which combines two or more relational expressions, is termed 

as a logical expression or a compound relational expression. Like the simple relational 

expressions, a logical expression also yields a value of one or zero, according to the truth table 

shown in Table 3.3 The logical expression given above is true only if a>b is true and x==10 is 

true. If either (or both) of them are false, the expression is false. 

Table 3.3 Truth table 

op-1 op-2 
Value of the expression 

op-1 && op-2 Op-1 II op-2 

Non-zero 

 

Non-zero 

 

0 

 

0 

Non-zero 

 

0 

 

Non-zero 

 

0 

1 

 

0 

 

0 

 

0 

1 

 

1 

 

1 

 

0 

 

Some examples of the usage of logical expressions are: 

1. if (age > 55 && salary < 1000) 

2. if (number < 0 II number > 100) 

We shall see more of them when we discuss decision statements. 

Note 

 Relative precedence of the relational and logical operators is as follows: 
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  Highest ! 

>>=  < <= 

== != 

&& 

  Lowest  II 

It is important to remember this when we use these operators in compound expressions. 

3.5 ASSISGNMENT OPERATORS 

Assignment operators are used to assign the result of an expression to a variable. We 

have seen the usual assignment operator, ‘=’. In addition, C has a set of ‘shorthand’ assignment 

operators of the form  

   v op = exp; 

Where v is a variable, exp is an expression and op is a C binary arithmetic operator. The operator 

op= is known as the shorthand assignment operator. 

 The assignment statement 

   v op = exp; 

is equivalent to  

   v = v op (exp); 

with v evaluated only once. Consider an example  

   x += y+1; 

 This is same as the statement 

   x = x + (y+1); 

 The shorthand operator += means ‘add y+1 to x’ or ‘increment x by y+1’. For y=2, the 

above statement becomes 
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   x +=3; 

and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the new 

value of x is 8.Some of the commonly used shorthand assignment operators are illustrated in 

Table 3.4. 

Table 3.4 Shorthand Assignment Operators 

Statement with simple 

Assignment operator 

Statement with 

Shorthand operator 

a = a+1 

 

a = a-1 

 

a = a*(n+1) 

 

a = a/(n+1) 

 

a = a%b 

a += 1 

 

a -= 1 

 

a*=n+1 

 

a/=n+1 

 

a%=b 

   

The use of shorthand assignment operators has three advantages; 

1. What appears on the left-hand side need not be repeated and therefore it becomes easier 

to write. 

2. The statement is more concise and easier to read. 

3. The statement is more efficient. 

These advantages maybe appreciated if we consider slightly more involved statement like 

   value(5*j-2) += delta; 

It is easier to read and understand and is more efficient because the expression 5*J-2 is evaluated 

only once. 
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Program 3.2 

Program of Fig. 3.2 prints a sequence of squares of numbers. Note the use of the shorthand 

operator *=. 

The Program attempts to print a sequence of squares of numbers starting from 2. The statement 

   a * = aj; 

 which is identical to    

   a = a*a; 

replaces the current value of a by its square. When the value of a becomes equal or greater than 

N (=100) the while is terminated. Note that the output contains only three values 2,4 and 16. 

Program 

  #define N 100 

  #define A 2 

  main() 

   { 

   int a; 

   a = a; 

   while (a < n) 

   { 

   printf(‘’%d\n’’,a); 

   a *= a; 

   } 

   } 
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Output 

 2 

 4 

 16 

Fig. 3.2 Use of shorthand operator *= 

3.6 INCREMENT AND DECREMENT OPERATORS 

  C allows two very useful operators not generally found in other languages. These are the 

increment and decrement operators: 

   ++ and – 

The operator ++ adds 1 to the operand, while – subtracts 1. Both are unary operators and take the 

following form: 

   ++m; or m++; 

   --m; or m--; 

  ++m is equivalent to m = m+1; (or m += 1;) 

  --m is equivalent to m = m-1; ( or m-= 1;) 

We use the increment and decrement statements in for and while loops extensively. 

While ++m and m++ mean the same thing when they form statements independently, they 

behave differently when they are used in expressions on the right-hand side of an assignment 

statement. 

Consider the following: 

   m = 5; 

   y = ++m; 

In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements as 
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   m = 5; 

   y = m++; 

then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand 

and then the result is assigned to the variable on left. On the other hand, a postfix operator first 

assigns the value to the variable on left and then increments the operand. 

 Similar is the case, when we use ++(or –( in subscripted variables. That is, the statement 

   a[i++] = 10; 

is equivalent to   

   a[i] = 10; 

   i = i +1; 

The increment and decrement operator can be used in complex statements Examples; 

   m = n++ -j+10; 

Old value of n is used in evaluating the expression n is incremented after the evaluation. Some 

compilers require a space on either side of n+= or ++n. 

Rules for ++ and __ Operators 

 Increment and decrement operators are unary operators and they require variable 

as their operands. 

 When postfix ++(or --) is used with a variable in an expression, the expression is 

evaluated first using the original value of the variable and then the variable is 

incremented (or decremented) by one. 

 When prefix ++(or --) is used in an expression, the variable is incremented (or 

decremented) first and then the expression is evaluated using the new value of the  

variable. 

 The precedence and associatively of ++ and __ operators are the same as those of 

unary + and unary -. 
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3.7 CONDITIONAL OPERATOR 

A ternary operator pair ‘’?,;; is available in C to construct conditional expressions of the 

form 

   exp1 ? exp2 : exp3 

where exp1,exp2, and exp3 are expressions. 

 The operator? : works as follows: exp1 is evaluated first. If it is nonzero (true), then the 

expression exp2 is evaluated and becomes the value of the expression. If exp1 is false, exp3 is 

evaluated and its value becomes the value of the expression. Note that only one of the 

expressions (either exp2 or exp3) is evaluated. For example, consider the following statements. 

   a = 10; 

   b = 15; 

   x = (a>b) ? a : b; 

In this example, x will be assigned the value of b. This can be achieved using the if . else 

statements as follows: 

   If (a > b) 

    x = a; 

   else 

   x = b; 

3.8 BITWISE OPERATORS 

C has a distinction of supporting special operators known as bitwise operator for 

manipulation of data at bit level. ?these operators are used of testing the bits, or shifting them 

right or left. Bitwise operators may not be applied to float or double. Table 3.5 lists the bitwise 

operators and their meanings. They are discussed in detail in Appendix I. 
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Table 3.5 Bitwise Operators 

Operator Meaning 

& 

 

I 

 

^ 

 

<< 

 

>> 

Bitwise AND 

 

Bitwise OR 

 

Bitwise exclusive OR 

 

Shift left 

 

Shift right 

 

3.9 SPECIAL OPERATORS 

C supports some special operators of interest such as comma operator, sizeof operator, 

pointer operators (& and*) and member selection operators (. and ->). The comma and sizeof 

operators are discussed in this section while the pointer operators are discussed in Chapter 11. 

Member selection operators which are used to select members of a structure are discussed in 

Chapters 10 and 11.ANSI committee has introduced two pre-processor operators known as 

‘’string-izing’’ and *token-pasting’’ operators (# and ##). They will be discussed in Chapter 14. 

The comma Operator  

The comma operator can be used to link the related expressions together. Comma-linked 

lists of expressions are evaluated left to right and the value of right-most expression is the value 

of the combined expression. For example, the statement 

   value = (x =10, y = 5, x +y); 

first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15(i.e. 10+5) to value. 

Since comma operator has the lowest precedence of all operators, the parentheses are necessary. 

Some applications of comma operator are: 
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in for loop; 

   for ( n=3, m=10, n<=m; n++, m++) 

in while loops 

   while (c = getchar(), c!= ‘10’) 

Exchanging values        t = x, x =y, y = t; 

The sizeof Operator 

The sizeof is a compile time operator and, when used with an operand, it return the 

number of bytes the operand occupies. The operand may be a variable a constant or a data type 

qualifier. 

Examples:    m = sizeof (sum); 

    n = sizeof (long int); 

    k = sizeof (235L); 

 The sizeof operator is normally used to determine the lengths of arrays and structures 

when their sizes are not known to the programmer. It is also used to allocate memory space 

dynamically to variables during execution of a program. 

Program 3.3 

In Fig.3.3 the program employs different kinds of operators. The results of their evaluation are 

also shown for expression. 

Notice the way the increment operator ++ works when used in an expression. In the statement 

    c = ++a –b; 

new value of a (=16) is used thus giving the value 6 to c. That is, a is incremented by 1 before if 

is used in the expression. However, in the statement 

    d = b++ + a; 
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the old value of b(=10) is used in the expression. Here, b is incremented by 1 after it is used in 

the expression.  

 We can print the character % by placing it immediately after another % character in the 

control string. This is illustrated by the statement 

    printf(‘’a%%b = %d/n*, a%b); 

The program also illustrate that the expression 

    C >d ? 1 : 0 

Assumes the value 0 when c is less than d and 1 when c is greater than d. 

Program 

  main () 

   { 

   int a, b, c, d; 

   a = 15; 

   b = 10; 

   c = ++a –b; 

   printf(‘’a = %d b= %d c = %d\n”, a,b,c); 

   d = b++ +a; 

   printf(‘’a =%d b=%d d=%d\n”, a, b, d); 

   printf(‘’a/b = %d\n”, a/b); 

   printf(‘’a%%b = %d\n”,a%b); 

   printf(‘’a* = b = %d\n”, a*b); 

   printf(“%d\n”,(c>d) ? 1 : 0); 
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   printf(‘’%d\n”, (c<d) ?  1 :0); 

 } 

Output 

 a = 16  b = 10 c = 6 

 a = 16   b = 11  d = 26 

 a/b = 1 

  a%b = 5 

 a *=b 176 

 0 

 1 

  Fig.3.3 Further illustration of arithmetic operators 

3.10 ARITHMETIC EXPRESSIONS  

      An arithmetic expression is a combination of variables, constants, and operators arranged as 

per the syntax of the languages. We have used a number of simple expressions in the examples 

discussed so far, C can handle any complex mathematical expressions, some of the examples of 

C expressions are shown in Table 3.6. Remember that C does not have an operator for 

exponentiation. 
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Table 3.6 Expressions 

 

 

 

 

 

 

 

 

Expressions are evaluated using an assignment statement of the form: 

  variable = expression 

variable is any valid C variable name. When the statement is encountered, the expression is 

evaluated first and the result then replaces the previous value of the variable on the left-hand 

side. All variables used in the expression must be assigned values before evaluation is attempted. 

Examples of evaluation statements are 

   x = a * b –c; 

   y = b / c *a; 

   z = a-b / c +d; 

The blank space around an operator is optional is optional and adds only to improve readability. 

When these statements are used in a program, the variables, a,b,c and d must be defined before 

they are used in the expressions. 

 

 

Algebraic expression C expression 

(ܾܽܿ) 

(ݕݔ) + ܿ 

a x b – c 

 

(m+n)(x+y) 

 

 

3x2+2x+1 

 

 

a * b –c 

 

(m+n)*(x+y) 

 

a*b/c 

 

 

3*x*x+2*x+1 

 

 

x/y+c 
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Program 3.4 

 The program in Fig. 3.4 illustrates the use of variables in expressions and their 

evaluation. 

Output of the program also illustrates the effect of presence of parentheses in expressions. This is 

discussed in the next section. 

Program 

 main () 

  { 

  float a,b,c,x,y,z; 

  a = 9; 

  b = 12; 

  c = 3; 

  x = a-b / 3 +c *2 -1; 

  y = a-b / (3 +c) * (2-1); 

  z  = a-(b / (3+c) *2) -1; 

  printf(‘’x=%f\n”,x); 

  printf(‘’y =%f\n”,y); 

  printf(‘’z = %f\n”,z); 

} 

Output  

 x = 10.00000 

 y = 7.000000 

 z = 4.000000 

Fig. 3.4 illustrations of evaluation of expressions 
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3.12 PRECEDENCE OF ARITHMETIC OF OPERATORS 

An Arithmetic expression without parentheses will be evaluated from left to right using 

the rules of precedence of operators. There are two distinct priority levels of arithmetic operators 

in C: 

  High priority */% 

  Low priority +- 

 The basic evaluation procedure includes two left-to-right passes through the  expression. 

During the first pass, the high priority operators (if any) are applied as they are encountered. 

Consider the following evaluation statement that has been used in the program of Fig.3.4 

  x = a-b/3 + c*2-1 

When a = 9, b=12 and c =3 the statement becomes 

  x = 9 – 12/3 +3*2-1 

and is evaluated as follows 

First pass 

Step 1: x = 9-4+3*2-1 

Step 2: x = 9-4+6-1 

Second pass  

Step 3: x = 5+6-1 

Step 4: x = 11-1 

Step5: x = 10 

However, the order of evaluation can be changed by introducing parentheses into an expression. 

Consider the same expression with parentheses as shown below: 

   9-12/(3+3)*(2-1) 
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 Whenever parentheses are used, the expressions within parentheses assume highest 

priority. If two or more sets of parentheses appear one after another as shown above, the 

expression contained in the left-most set is evaluated firs and the right-most in the last. Given 

below are the new steps. 

First pass 

 Step1: 9-12/6*(2-1) 

 Step2: 9-12/6*1 

Second pass 

 Step3: 9-2*1 

 Step4: 9-2 

Third pass  

 Step5:7 

The time, the procedure consists of three left-to-right passes. Howeverr, the number of 

evaluation steps remains the same as 5(i.e., equal to the number of arithmetic operations). 

Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward 

from the innermost set of parentheses. Just make sure that every opening parenthesis has a 

matching closing parenthesis. For example 

  9-(12/(3+3)*2)-1 =4 

whereas 

  9-(12/3)+3*2)-1= -2 

While parentheses allow us to change the order of priority, we may also use them to improve 

understand ability of the program. When in doubt, we can always add an extra pair just to make 

sure that the priority assumed is the one we require. 
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Rules for Evaluation of Expression 

 First, parenthesized sub expression from left to right is evaluated. 

 If parentheses are nested, the evaluation begins with the innermost sub-expression. 

 The precedence rule is applied in determining the order of application of operators in 

evaluating sub-expressions. 

 Associativity rule is applied when two or more operators of the same precedence level 

appear in a sub-expression. 

 Arithmetic expressions are evaluated from left to right using the rules of precedence. 

 When parentheses are used, the expressions within parentheses assume highest priority. 

Program 3.5 

Write a C Program for the following expression: a=5=8&& 6!=5 

  #include<stdio.h> 

 #include<conio.h> 

 void main ( ) 

  { 

  int a; 

  a = 5<=&& 6!=5; 

  printf’’%d’’’,a); 

  getch (); 

  } 

Output 

 1 

Fig. 3.6 Program for the expression: a = 5 < = 8&& 6! = 5 
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3.13 SOME COMPUTATIONAL PROGRAMS 

When expressions include real values, then it is important to take necessary precautions 

to guard against certain computational errors. We know that the computer gibes approximate 

values for real numbers and the errors due to such approximations may lead to serious problems. 

For example, consider the following statements: 

  a = 1.0/3.0 

  b = a*3.0; 

we know that (1.0/3.0)3.0 is equal to1. But there is no guarantee that the value of b computed in 

a program will equal 1. 

 Another problem is division by zero. On most computers, any attempt  to divide a 

number zero will result in abnormal termination of the program. In one cases such a division 

may produce meaningless results. Care should be taken to test the denominator that is likely to 

assume zero value and avoid any division by zero. 

 The third problem is to avoid overflow or underflow errors. It is our responsibility to 

guarantee that operands are of the correct type and range, and the result may not produce any 

overflow of underflow. 

Program 3.6 Output of the program in fig.3.7 shows round-off errors that can occur in 

computation of floating point numbers.   

Program  

/*........................Sum of n terms of 1/n.........................*/ 

main( ) 

{ 

float sum, n, term; 

int count = 1; 

sum = 0; 
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print(“enter the value of  n\n”); 

scanf(“%f”, &n); 

term = 1.0/n ; 

while(count <= n) 

{ 

cum = sum + term ; 

count++ ; 

} 

printf(“sum = %f \n”, sum) ; 

} 

output 

enter vaule of n 

99  

sum =1.000011 

enter vaule of n 

143 

sum = 0.9999999 

Fig 3.7 round-off errors in floating point computations 

We know that the sum of n terms of 1/n is 1.  However, due to errors in floating point 

representation, the result is not always1. 
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3.14 TYPE CONVERSIONS IN EXPRESSIONS 

Implicit type conversions 

C permits mixing of constants and variable of different types in an expression.  C 

automatically converts any intermediate value to the proper type so that the expression can be 

evaluated without losing any significance.  This automatic conversion is known as implicit type 

conversion.   

      During evaluation it adheres to very strict rules of type conversion.  If the operands are 

of different types, the ‘lower’ type s is automatically converted to the ‘higher’ type before the 

operation proceeds.  The result is of the higher types.   

Given below is the sequence of rules that are applied while evaluating expressions. 

All short and char are automatically converted to int; then 

1. If one of the operands is long double, the other will be converted to long double and the 

result will be long double; 

2. Else, if one of the operands is double, the other will be converted to double and the result 

will be double; 

3. Else, if one of the operands is float, the other will be converted to float and the result will 

be float;  

4. else, if one of the operands is unsigned long int, the other will be converted to unsigned 

long int and the result will be unsigned long int; 

5. Else, if one of the operands is long int and other is unsigned int, then 

a) If unsigned int can be converted to long int, the unsigned int operand will be converted 

as such and the result will be long int; 

b) Else, both operands will be converted to unsigned long int and the result will be unsigned 

long int; 

6. Else, if one of the operands is long int, the other will be converted to long int and the 

result will be long int; 

7. Else, if one of the operands is unsigned int, the other will be converted to unsigned int 

and the result will be unsigned int; 
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Conversion Hierarchy 

Note that C uses the rule that, in all expressions except assignment, any implicit type 

conversions are made from a lower size type to a higher size type as shown below: 

Conversion hierarchy 

 

 

 

 

 

 

      Note that some versions of C automatically convert all floating-point operands to double 

precision. 

The final result of an expression is converted to the type of the variable of the left  of the 

assignment sign before assigning the value to it. However, the following changes are introduced 

during the final assignment. 

Explicit Conversion 

 We have just discussed how C performs type conversion automatically. 

However, there are instances when we want to force a type conversion in way that is different 

from the automatic conversion. 

Consider , for example, the calculation of ratio of females to males in a town. 

  Ratio = female_number/male_number 

Since female_number and male_number are declared as integers in the program, the decimal part 

of the result of the division would be lost and ratio would represent a wrong figure. This problem 

can be solved by converting locally one of the variables to the floating point as shown below: 

Long double 

double 

float 

Unsigned long int 

Long int 

Unsigned int  

int 

Short        char 
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  Ratio = (float)female_number/male_number 

The operator (float) converts the female_number to floating point for the purpose of evaluation 

of the expression. Then using the rule of automatic conversion, the division is performed in 

floating point mode, thus retaining the fractional part of result. 

     Note that in no way does the operator (float) affect the value of the variable female number. 

And also, the type of female number remains as int in the other parts of the program. 

The process of such a local conversion is known as explicit conversion or casting a value. The 

general form of a cast is: 

  (type-name) expression 

Where type-name is one of the standard C data types. The expression may be a constant, variable 

or an expression) some examples of casts and their actions are shown in Table 3.7 

Table 3.7 Use of Casts 

Example Action 

x = (int) 7.5 

 

a = (int) 21.3/(int)4.5 

 

b = (double)sum/n 

 

y = (int)(a+b) 

 

z = (int)a+b’ 
 

p = cos((double)x) 

7.5 is converted to integer by truncation 

 

 Evaluated as 21/4 and the result would be 5 

 

Division is done in floating point mode 

 

The result of a+b is converted to integer 

 

a is converted to integer and then added to b. 

 

Converts x to double before using it 

 

Casting can be used to round-off a given value.  Consider the following statement: 

  x = (int)(y+0.5); 
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If y is 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is assigned to x. 

Of course, the expression, being cast is not changed. 

Program 3.7 

Figure 3.9 shows a program using a cast to evaluate the equation sum ∑ ሺଵ௜ሻ𝑛௜=ଵ  

Program 

 main () 

 { 

 float sum : 

 int        n  ; 

 sum = 0 ; 

 for (n =1 ; n<=10 ; ++n) 

  { 

  sum = sum + 1/(float) n; 

  printf (“2d %6.4f\n”, n, sum); 

  } 

                     } 

Output 

1. 1.0000 

2. 1.5000 

3. 1.8333 

4. 2.0833 

5. 2.2833 

6. 2.4500 
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7. 2.5929 

8. 2.7179 

9. 2.8290 

10. 2.9290 

Fig. 3.9 Use of a cast 

  3.15 OPERATOR PRECEDENCE AND ASSOCIATIVITY 

 As mentioned earlier each operator, in /c has precedence associated with it this precedence 

is used to determine how an expression involving more than one operator is evaluated. There are 

distinct levels of precedence and an operator may belong to one of these levels. The operators at 

the higher level of precedence are evaluated first. The operators of the same precedence are 

evaluated either form ‘left to right’ or from ‘right to left’, defending on the level this is in own as 

the associativity property of an operator table 3.8 provides a complete list of operators, their 

precedence levels, and their rules of association. The groups are listed in the order of decreasing 

precedence. Rank 1 indicated the highest precedence level and 15 the lowest. The list also 

includes those operators, which we have not yet been discussed. 

 It is very important to not carefully. The order of precedence and associativity of operators, 

consider the following conditional statement: 

 If(x = = 10+ 15 &&y<10) 

The precedence rules say that the addition operator has a higher priority than the logical operator 

(&&) and the relational operators (== and <). Therefore, the addition of 10 and 15 is executed 

first. This is equivalent to: 

 If(x==25 && y<10) 

The next step is to determine whether x is equal to 25 and y is less than 10. If we assume a value 

of 20 for x and 5 for y, then 

 x ==25 is FALSE (0) 

   y < 10 is TRUE (1) 
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Note that since the operator < enjoys a higher priority compared to ==, y<10 is tested first and 

then x ==25 is tested. 

Finally we get: 

 if (FALSE && TRUE) 

Because one of the conditions is FALSE, the complex condition is FALSE. 

In the case of &&, it is guaranteed that the second operand will not be evaluated if the first is 

zero and in the case of II, the second operand will not be evaluated if the first is non-zero. 

Table 3.8 Summary of C Operators 

Operator Description Associativity Rank 

() 

 

[] 

Function call 

 

Array element reference  

Left to right 1 

+ 

- 

++ 

-- 

! 

- 

* 

 

& 

Sizeof 

(type) 

Unary plus 

Unary minus 

Increment 

Decrement 

Logical negation 

Ones complement 

Pointer 

reference(indirection) 

Address 

Size of an object 

Type cast (conversion) 

Right to left 2 

* 

/ 

% 

 

Multiplication 

Division 

Modulus  

Left to right 3 

+ Addition Left to right 4 
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- Subtraction  

<< 

>> 

Left shift 

Right shift 

Left to right 5 

< 

<= 

> 

>= 

Less than  

Less than or equal to 

Greater than 

Greater than or equal to 

Left to right 6 

 

 

Rules of Precedence and Associativity 

 Precedence rules decides the order in which different operators are applied 

 Associativity rule decides the order in which multiple occurrences of the same level 

operator are applied 

3.16 MATHEMATICAL FUNCTIONS 

 Mathematical functions such as cos, sqrt, log, etc, are frequently used in analysis of real-

life problems. Most of the C compliers support these basic math functions. However, there are 

systems that have a more comprehensive math library and one should consult the reference 

manual to find out which functions are available. Table 3.9 lists some standard math functions. 

Table 3.9 Math functions 

Function Meaning 

Trigonometric 

acos(x) 

asin(x) 

atan(x) 

atan 2(x,y) 

cos(x) 

sin(x) 

tan(x) 

 

Arc cosine of x 

Arc sine ofx 

Arc tangent of x 

Arc tangent of x/y 

Cosine of x  

Sine of x 

 Tangent of x 
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Hyperbolic 

cosh(x) 

sinh(x) 

tanh(x) 

 

Other functions 

ceil(x) 

exp(x) 

fabs(x) 

floor(x) 

fmod(x,y) 

log(x) 

log10(x) 

pow(x,y) 

sqrt(x) 

 

 

Hyperbolic cosine of x 

Hyperbolic sine of x 

Hyperbolic tangent of x 

 

 

x rounded up to the nearest 

integer 

e to the x power= (ex)  

Absolute value of x 

x rounded down to the nearest 

integer 

remainder of x/y 

natural log of x,x>0 

Base 10 log x,x>0 

x to the power y (xy) 

Square root of x,x>=0 

 

Note 

1. x and y should be declared as double 

2. In trigonometric and hyperbolic functions, x and y are in radians. 

3. All the functions return a double  

4. C99 has added float and long double versions of these functions 

5. See the appendix ‘C99 Features’ for details. 

As pointed out earlier in Chapter 1, to use any of these functions in a program, we should include 

the line: 

 #include <math.h> 

in the beginning of the program. 
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Just Remember 

 Use decrement and increment operators carefully, understand the difference between 

postfix and prefix operations before using them. 

 Add parentheses wherever you feel they would help to make the evaluation order clear. 

 Be aware of side effect produced by some expressions. 

 Avoid any attempt to divide by zero. It is normally undefined. It will either result in a 

fatal error or in incorrect results. 

 Do not forget a semicolon at the end of an expression 

 Understand clearly the precedence of operators in an expression, use parentheses, if 

necessary. 

 Associativity is applied when more than one operator of the same precedence are used 

in an expression. Understand which operators associate from right to left and which 

associate from left to right 

 Do not use increment or decrement operators with any expression other than a variable 

identifier. 

 It is illegal to apply modules operator % with anything other than integers. 

 Do not use a variable in an expression before it has been assigned a value 

 Integer division always truncates the decimal part of the result. Use it carefully. Use 

casting where necessary. 

 The result of an expression is converted to the type of the variable on the left of the 

assigning the value to it. Be careful about the loss of information during the conversion. 

  All mathematical functions implement double type parameters and return double type 

values. 

 It is an error if any space appears between the two symbols of the operators ==, !=, <= 

and >=. 

 It is an error if the tow symbol of the operators !=, <= and >= are reversed. 

  Use space on either side of binary operator to improve the readability of the code. 

 Do not use increment and decrement operators to floating point variables 
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 Do not confuse the equality operator == with the assignment operator =. 

Case Studies 

1. Salesman’s Salary 

 A computer manufacturing company has the following monthly compensation policy to 

their sales-persons: 

 Minimum base salary          : 1500.00 

 Bonus for every computer sold     : 200.00 

 Commission on the total monthly sales : 2 per cent 

Since the prices of computers are changing, the sales price of each computer is fixed at the 

beginning of every month. A program to compute a sales-person’s gross salary is given in 

Fig.3.10. 

 

Program 

 #define BASE_ SALARY 1500.00 

 #define BONUS_RATE 200.00 

 #define COMMISSION   0.02 

 main () 

 { 

 int quantity ; 

 float gross_salary, price; 

 float bonus, commission; 

 printf(*input number sold and price\n*); 

 scanff(&d &f*, &quantity, %price); 

 bonus  = BONUS RATE* quantity; 

 commission  = COMMISSION * quantity * price; 

 gross salary   = BASE _SALARY +bonus + commission; 

 printf(*/n*); 

 printf(*Bonus =  &6.2f/n*, bonus); 

 printf(*commission =  %6.2f/n*, commission); 

 printf(*Gross salary=  %6.2f/n*,gross_salary); 
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 } 

Output 

 Input number sold and price 

5 20450.00 

 Bonus = 1000.00 

 Commission= 2045.00 

 Gross salary= 4545.00 

  

Fig .3.10 Program of salesman’s salary 

Given the base salary, bonus, and commission rate, the inputs necessary to calculate the gross 

salary are, the price of each computer and the number sold during the month. 

 The gross salary is given by the equation: 

 Gross salary = base salary +(quantity*bonus rate) 

     + (quantity * price)*commission rate 

2. Solution of the quadratic equation 

An equation of the form   

 ax2+bx+c = 0 

is known as the quadratic equation. The values of x that satisfy the equation are known as the 

roots of the equation. A quadratic equation has two roots which are given by the following two 

formulae: 

 root1 = 
−௕+௦௤௥௧ሺ௕2−ସ௔௖ሻଶ௔  

 root2 = 
−௕−௦௤௥௧ሺ௕2−ସ௔௖ሻଶ௔  

A program to evaluate these roots is given in Fig. 3.11. The program the user to input the values 

of a,b and c and outputs root1 and root2. 
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Program 

 #include<math.h> 

 main () 

  { 

  float a, b ,c discriminant, 

  root1, root2 

  printf(‘’input values of a, b and c\n”); 

  scanf(‘’%f %f, &a, &b, &c); 

  discriminant = b*b-4*a*c; 

  if(discriminant < 0) 

  printf(‘’\n\nROOTS ARE IMAGINARY\n”); 

  else 

  { 

      root1 = (-b + sqrt(discriminant))/(2.0*a); 

      root2 = (-b – sqrt(discriminant))/(2.0*a); 

  printf(‘’\n\nRoot1 = %5.2/n/nRoot2 = %5.2f\n”, 

       root1,root2); 

  } 

                } 

Output 

Input values of a,b  and c 
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2  4  - 16 

Root 1 = 2.00 

Root 2 = - 4.00 

Input values of a,b, and c 

1 2 3               ROOT ARE IMAGINARY 

Fig .3.11 Solution of a quadratic equation 

The term (b2-4ac) is called the discriminant. If the discriminant is less than zero, its square roots 

cannot be evaluated. In such cases, the roots are said to be imaginary numbers and the program 

outputs an appropriate message. 

4   MANAGING INPUT AND OUTPUT OPERATIONS 

Key Terms 

Formatted input | control string | formatted output 

4.1 INTRODUCTION 

Reading, processing, and writing of data are the three essential functions of a computer 

program. Most programs take some data as input and display the processed data, often known as 

information or results, on a suitable medium. So far we have seen two methods of providing data 

to the program variables. One method is to assign values to variables through the assignment 

statements such as x =5; a=0; and so on. Another method is to use the input function scanf which 

can read data from a keyboard. We have used both the methods in most of our earlier example 

programs. For outputting results we have used extensively the function printf which sends 

results out to a terminal. 

 Unlike other high-level languages, C does not have any built-in input/output statements 

as part of its syntax. All input/output operation are carried out through function calls such as 

prinf and scanf. There exist several functions that have more or less become standard for input 

and output operations in C. These functions are collectively known as the standard I/O library. In 
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this chapter we shall discuss some common I/O functions that can be used on many machines 

without any change. However, one should consult the system reference manual for exact details 

of these functions and also to see what other functions are available.  

 It may be recalled that we have included a statement 

   #include <math.h> 

 In the sample program 5 in chapter 1, where a math library function cos(x) has been used. This 

is to instruct the compiler to fetch the function cos(x) from the math library, and that it is not a 

part of C language. Similarly, each program that uses a standard input/output function must 

contain the statement 

   #include <stdio.h> 

at the beginning. However, there might be exceptions. for example, this is not necessary for the 

functions printf and scanf which have been defined as a part of the C language. 

 The file name stdio.h is an abbreviation for standard input-output header file. The 

instruction #include <stdio.h>  tells the complier to search for a file named stdio.h and place its 

contents at this point in the program. The contents of the header file become part of the source 

code when it is complied. 

4.2 READING A CHARACTER 

The simplest of all input/output operations is reading a character from the ‘standard 

input’ unit (usually the keyboard) and writing it to the ‘standard output’ unit (usually the screen). 

Reading a single character can be done by using the function getchar. (this can also be done with 

the help of the scanf function which is discussed in section 4.4). The getchar takes the following 

form: 

  variable_name = getchar (); 

variable_name is a valid C name that has been declared as char type. When this statement is 

encountered, the computer waits until a key is pressed and then assigns this character as a value 

to getchar function. Since getchar is used on the right-hand side of an assignment statement, the 

character value of getchar is in turn assigned to the variable name on the left. For example 
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  char name; 

  name = getchar (); 

will assign the character ‘H’ to the variable name when we press the key H on the keyboard. 

Since getchar is a function, it requires a set of parentheses as shown. 

Program 4.1 

The program in fig. 4.1 shows the use of getchar function in an interactive environment. 

The program displays a question of YES/NO type to the user and reads the user’s response in a 

single character (Y or N), if the response is Y or y, it outputs the message 

  My name is BUSY BEE 

Otherwise, outputs 

  You are good for nothing 

Note  There is one line space between the input text and output message. 

Program 

 #include <stdio.h> 

 main () 

 { 

 char answer; 

 printf(‘’would you like to know my name?/n’’); 

 printf(‘’Type Y for YES and N for NO;’’); 

 answer = getchar();/*.... reading a character...*/ 

 if (answer == ‘y’ ii answer == ‘y’) 

 printf(‘’/n/nMy name is BUSY BEE/n*); 
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 else 

 printf(‘’/n/nYou are good for nothing/n’’); 

 } 

Output 

 Would you like to know my name? 

 Type Y for YES and N for NO; Y 

 My name is BUSY BEE 

 Would you like to know my name? 

 Type Y for YES and N for NO: n 

 You are good for nothing 

Fig. 4.1 use of getchar function to read a character from keyboard 

The getchar function may be called successively to read the characters contained in a line of text. 

For example, the following program segment reads characters from keyboard one after another 

until the ‘Return’ key is pressed. 

  ------------------ 

  ----------------- 

  char character; 

  character = ‘ ‘; 

  while(character != ‘/n’) 

  { 

      character = getchar ( ); 

  } 
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  ------------ 

  --------- 

Warning   

The getchar( ) function accepts any character keyed in. This includes RETURN and TAB. This 

means when we enter single character input, the newline character is waiting in the input queue 

after getchar( ) returns. This could create problems when we use getchar(0)  in a loop 

interactively. A dummy getchar( ) may be used to ‘eat’ the unwanted newline character. We can 

also use the fflush function flush out the unwanted characters. 

Note 

We shall be using decision statements like if, if..... else and while extensively in this chapter. 

They are discussed in detail in chapters 5 and 6. 

Program 4.2 

The program of fig .4.2 requests the user to enter a character and displays a message on the 

screen telling the user whether the character is an alphabet or digit, or any other special 

character. 

This program receives a character form the keyboard and tests whether it is a letter or digit and 

prints out a message accordingly. These tests are done with the help of the following functions. 

  isalpha(character) 

  isdigit(character) 

   for example, isalpha assumes a value non-zero (TRUE) if the argument character contains 

alphabet; otherwise it assumes 0 (FALSE). Similar is the case with the function is digit. 

Program 

 #include <stdio.h> 

 #include <ctype.h> 
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 main () 

 { 

  char character; 

   printf(“press any key\n”); 

  character = getchar (); 

  if (isalpha(character) > 0)/* test for letter */ 

  printf(“ The character is a letter’’); 

  else 

   if (isdigit (character) > 0)/* test for digit */ 

   printf(“ The character is a digit’’); 

  else 

  printf(“ The character is not alphanumeric”); 

        } 

Output 

 Press any key 

 h 

 The character is a letter. 

 Press any key 

5 

The character is a digit  

Press any key 
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* 

The character is not alphanumeric. 

Fig .4.2 Program to test the character type 

C supports many other similar functions, which are given in Table 4.1. These character functions 

are contained in the file ctype.h and therefore the statement 

  #include <ctype.h> 

Must be included in the program 

Table 4.1   Character Test functions 

Function Test 

isalnum(c) 

isalpha(c) 

isdgit(c) 

islower(c) 

isprint(c) 

ispunct(c) 

isspaace(c) 

isupper(c) 

Is c an alphanumnberic character? 

Is c an alphabetic character? 

Is c a digit? 

Is c lower case letter? 

Is c a printable character? 

Is  c a punctuation mark? 

Is c a whit space character? 

Is c an upper case letter? 

 

4.3 WRITING A CHARACTER 

Like getchar, there is an analogous function putchar for writing characters one at a time to the 

terminal. It takes the form as shown below: 

  putchar (variable_name); 
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where variable_name is a type char variable containing a character. This statement displays the 

character contained in the variable_name at the terminal. For example, the statements 

  answer = ‘Y’ 

  putchar (answer); 

will display the character Y on the screen. The statement 

  putchar (‘\n’); 

would cause the cursor on the screen to move to the beginning of the next line. 

Program  4.3 

A program that reads a character from keyboard and then prints it in reverse case is given in fig 

4.3. That is, if the input is upper case, the output will be lower case and vice versa. 

The program uses three new functions: islower, toupper, and tolower.  This function islower is 

a conditional function and takes the value TRUE if the argument is a lowercase alphabet; 

otherwise takes the value FALSE. The function toupper converts the lowercase argument into an 

uppercase alphabet while the function tolower does the reverse. 

Program 

 #include <stdio.h.> 

 #include <ctype.h> 

 main ( ) 

 { 

    char alphabet; 

 printf(‘’Enter an a alphabet’’); 

 putchar(‘\n’); /* move to next line*/ 

 alphabet = getchar ( ); 
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 if (islower(alphabet)); 

 putchar(toupper(alphabet));/* Reverse and display*/ 

 else 

 putchar(tolower(alphabet));/* Reverse and display*/ 

 } 

Output 

 Enter an alphabet 

 a 

 A 

 Enter a alphabet 

 Q 

 Q 

 Enter an alphabet 

 z 

 Z 

Fig .4.3 Reading and writing of alphabets in reverse cast 

4.4 FORMATTED INPUT 

Formatted input refers to an input data that has been arranged in a particular format.  For 

example,   consider the following data: 

  15.75   1233 John 

 This line contains three pieces of data, arranged in particular form. Such data has to be 

read conforming to the format of its appearance. For example, the first part of the data should be 
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read into a variable float the second in tint, and the third part int char. This is possible in ‘c using 

the scanf function. (scanf means scan formatted) 

 We have already used this input function in a number of examples. Here, we shall 

explore all of the options that are available for reading the formatted data with scanf function. 

The general from of scanf is  

  scanf(‘’ control string’’’, arg1,arg2,........argn); 

 The control string specifies the field format in which the data is to be entered and the 

arguments arg1, arg2, ,,,....argn specify the address of locations where the data is stored. Control 

string and arguments are separated by commas. 

Control string (also known as format string) contains field specifications, which direct the 

interpretation of input data. int may include: 

 Field (or format) specifications, consisting of the conversion character %, data type 

character (or type specifier), and an optional number, specifying the field width. 

 Blanks, tabs, or newlines. 

Blanks, tabs and newlines are ignored. The data type character indicates the type 

of data that is to be assigned to the variable associated with the corresponding argument. 

The field width specifier is optional. The discussions that follow will clarify these 

concepts. 

Inputting integer numbers  

The field specification for reading an integer number is 

  % w sd 

 The percentage sign(%) indicates that a conversion specification follows. W is an integer 

number that specifies the field width of the number to be read and as, known as data type 

character, indicates that the number to read is in integer mode, consider the following example: 

  scanf (%d %d, &num1, &num2); 
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Data line: 

   50 31426 

   The value 50 is assigned to num1 and 31426 50 to num2. Suppose the input data is as follows: 

31426 50 

 The variable nu1 will be assigned 31 (because of %2d) and num2 will ne assigned 426 

(unread part of 31426). The value 50 hat is unread will be assigned to the first variable in the 

next scanf call. This kind of errors may be eliminated if we sue the field specifications without 

the field width specifications. That is, the statement 

  scanf(‘’%d  %d, &num1, &num2); 

Will read the data 

   31426 50 

Correctly and assign 31426 to num1 and 50 to num2. 

Input data items must be separated by spaces, tabs or newlines. Punctuation marks do not count 

as separators, when the scanf function searches the input data line for a value to be read, it will 

always bypass any white space characters. 

 What happens if we enter a floating point number instead of an integer? The fractional 

part may be stripped away! Also, scanf may skip reading further input. 

 When the scanf reads a particular value, reading of the value will be terminated as soon 

as the number of characters specified by the field width is reached (if specified) or until a 

character that is not valid for the value being read is encountered. In the case of integers, valid 

characters are an optionally signed sequence of digits. 

An input field may be skipped by specifying *in the place of field width. For example, the 

statement 

  scanf(%d %d, &a &b) 
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Will assign the data 

  123 456  789 

as follows 

  123  to a 

  456   skipped (because of *) 

  789  to b 

  The data type character d may be preceded by ‘I’ (letter ell) to read long integers and h 

to read short integers. 

Note  

 We have provided white space between the field specifications these spaces are not 

necessary with the numeric input it is a good practice to include the. 

Program 4.4 

Various input formatting options for reading integers are experimented in the program shown in 

fig.4.4 

Program 

  main ( ) 

  [ 

  int a,b,c x.y.z; 

  int p,q,r; 

  printf(‘’Enter three integer numbers\n”); 

  scanf(‘’%d %d %d’’’, &a,&b,&c);  

  printf(‘’%d %d %d \n\n’’, a,b,c); 
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  printf(‘’Enter two 4-digit numbers\n’’); 

  scanf(‘’%d %4d’’, &x,&y); 

  printf(‘’%d, %d\n\n’’, x,y); 

  print(’’Enter two integers\n”); 

  scanf(‘’%d %d’’, &a &x); 

  printf(‘’%d %d /n/n’’a,x); 

  printf(‘’Enter a nine digit number \n”); 

  scannf(‘’%3d %4d %, &q,  &r); 

  printf(‘’%d %d   %d /n/n’’,p,q,r/; 

  printf(‘’Enter two digit number\n’’) 

  scanf(‘’%d %d, &x,&y); 

  printf(‘’%d %^d, x,y\n”); 

Output 

  Enter three digit number 

1 2  3 

1 3  - 3577 

Enter tow 4-digit number 

6789 4321 

67   89 

Enter three integer number 

1    3   6    
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1    3     -3577 

Enter two 4 digit numbers 

6789  4321 

67     89 

Enter two integers 

44 66 

4321 44 

Enter a nine-digit number 

1234566789 

66n#  1234  567 

 

Enter two three – digit number  

1233         456 

89      123 

Fig. 4.4 Reading integers using scanf 

The first scanf requests input data for three integer values a,b, and c, and accordingly three 

values 1,2, and 3 are keyed in. Because of the specification %*d the value 2 has been skipped 

and 3 jis assigned to the variable b. Notice that since no data is available for c, it contains 

garbage. 

 The second scanf specifies the format %2d and %4d for the variables x and y 

respectively. Whenever we specify field width for reading integer number, the input numbers 

should not contain more digits that the specified size. Otherwise, the extra digits on the right-
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hand side will be truncated and assigned to the next variable in the list. Thus, the second scanf 

has truncated the for digit number 6789 and assigned 67 to x and 89 to y. The value 4321 has 

been assigned to the first variable in the immediately following scanf statement. 

Note: it is legal to use a non-whitespace character between field specifications; however, the 

scanf expects a matching character in the given location, for example 

  scanf(‘’%d-%d, &a, &b); 

accepts input like 

  123-456 

to assign 123 to a and 456 to b. 

Inputting Real Number 

Unlike integer numbers, the field width or real numbers in s=not to be specified and 

therefore scanf reads real numbers using the simple specification %f fro both the notations, 

namely, decimal point notation and exponential notation. For example, the statement 

  scanf(‘’%f %f %f’’, &x. &y, &z) 

with the input data 

  475.89  43.21E-1  678 

will assign the value 475.89 to x, 4.321 to y, and 678.0 to z. The input field specifications may 

be separated by any arbitrary blank spaces. 

If the number to be read is of double type, then the specification should be %if instead of simple 

%f. A number may be skipped using %*f specification. 

Program 4.5. 

Reading of real numbers (in both decimal point and exponential notation) is illustrated in fig4.5 
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Program 

  main ( ) 

  { 

  float x,y; 

  double p,q; 

  printf(‘’values of x and y:’’); 

  scanf(‘’%f %d’’, &x, &y); 

  printf(‘’\n’’); 

  printf(‘’x = %f/ny = $f\n\n’’, x,y); 

  printf(‘’values  of p and q:’’); 

  scanf(‘’%1f’’, &p, &q); 

  printf(‘’/n/np = %.121f/np = %.12e’’, p, q);  

} 

Output 

 Values of x and y: 12.3456  17.5e-2 

 x = 12.345600 

 y = 0.17500 

 values of p and q: 4.142857142857   18.5678901234567890 

 p = 4.142857142857 

 q =  1.856789012346e+001 

  Fig 4.5 Reading of real numbers 
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Inputting Character Strings 

We have already seen how a single character can be read from the terminal using the 

getchar function. The same can be achieved using the scanf function also. In addition, a scanf 

function can input strings containing more than one character. Following are the specifications 

for reading character strings: 

  %ws or %wc 

 The corresponding argument should be a pointer to a character array. However, %c may 

be used to read a single character when the argument is a pointer to a char variable. 

Program 4.6 

Reading of strings using %wc and %ws is illustrated in fig. 4.6 

The program in fig. 4.6 illustrates the use of various field specifications for reading strings. 

When we sue %wc for reading a string the system will wait until the wth character is keyed in. 

Note that the specification %s terminates reading at the encounter of a blank space. Therefore, 

name2 has read only the first part of ‘New York’ and the second part is automatically assigned to 

name3. However, during the second run, the string ‘’New-York’ is correctly assigned to name2. 

Program 

 main ( ) 

 { 

 int no; 

 char name1[15], name2[15], name3[15]; 

 printf(‘’ Enter serial number and nbame on\n”); 

 scanf(‘’%d %15c, &no, name1); 

 printf(‘%d %15s\n\n”, no, name1); 
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 printf(‘’Enter serial number and name two\n’’); 

 scanf(‘%d %s’, &no, name2); 

 print(‘’%d %15s/n/n’’, no, name2); 

 printf(‘’Enter serial number and name three\n’’); 

 scanf(‘’%d %15s’’, &no, name3); 

 printf(‘’%d %15s\n\n”, no, name3); 

 } 

Output 1 

 Enter serial number and name one 

1 123456789012345 

1 123456789012345r  

Enter serial number and name two 

2 New York 

3 New 

Enter serial number and name three 

2 York 

Output 2 

Enter serial number and name one 

1 123456789012 

1 123456789012r 

Enter serial number and name two 

2 New-York 
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2  New-York 

Enter serial number and name three 

3 London 

4 London 

Fig 4.6 Reading of strings 

Some versions of scanf support the following conversion specifications ofr strings: 

  %[characters] 

  %[^characters] 

 The specification %[characters] means that only the characters specified within the 

brackets are permissible in the input string. If the input string contains any other character, the 

string will be terminated at the first encounter of such a character the specification 

%[^characters] does exactly the reverse.. That is, the characters specified after the circumflex (^) 

are not permitted in the input string. The reading of the string will be terminated at the encounter 

of one of these characters. 

Program 4.7 

The program in fig. 4.7 illustrates the function of %[] specification. 

Program-A 

  main ( ) 

  { 

  char address[80]; 

  printf(‘’Enter address\n”); 

  scanf(‘’%[a-z]’’, address); 

  printf(‘’%-80s\n\n’’, address); 
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  } 

Output  

  Enter address 

  New delhi  110002 

  New delhi 

 

Program-B 

  main  ( ) 

  { 

  char address[80]; 

  printf(‘’Enter address\n”); 

  scanf(‘’%[^/n]’’, address); 

  printf(‘’%-80s’’, address); 

  } 

Output 

  Enter address 

  New delhi 110 002 

  New delhi 110 002 

  Fig 4.7 Illustration of conversion specification %[] for stings  

Reading blank spaces 
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 We have earlier seen that %s specifier cannot be used to read string with blank spaces. 

But, this can be done with the help of %[] specification. Blank spaces may be included within the 

brackets, thus enabling the scanf to tread strings with spaces. Remember that the lowercase and 

uppercase letters are distinct. See fig. 4.7 

Reading Mixed Data Types 

It is possible to use on scanf statement to input a data line containing mixed mode data. In 

such case, care should be exercised to ensure that the input data items mach the control 

specification in order and type. When an attempt is made to read an item that does not match the 

type expected, the scanf function does not read any further and immediately returns the values 

read. The statement 

 scanf(‘’%d %c  %s’’’, &count, &ratio, name); 

Will read the data 

  15 p  1.575  coffee 

Correctly and assign the values to the variables in the order in which they appear. Some systems 

accept integers in the place of real numbers and vice versa, and the input data is converted to the 

type specified in the control string. 

Note:   A space before the %c specification in the format string is necessary to skip the white 

space before p. 

Detection of Errors in Input 

When a scanf function completes reading its list, it returns the value of number of items 

that are successively read. This value can be used to test whether any errors occurred in reading 

the input. For example, the statement 

  scanf(‘’%d %f %s , &a, &b, name); 

Will return the value 3 if the following data is typed in 

  20 150.25 motor 
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and will return the value 1 if the following line is entered 

  20 motor 150.25 

 This is because the function would encounter a string when it was expecting a floating-

point value, and would therefore terminate its scan after reading the first value. 

Program 4.8 

The program presented in fig. 4.8 illustrates the testing for correctness of reading of data by 

scanf function. 

The function scanf is expected to read three items of data and therefore, when the values 

for all the three variables are read correctly, the program prints out their values. During the third 

run, the second item does not math with the type of variable and therefore the reading is 

terminated and the error message is printed. Same is the case with the fourth run. 

 In the last run, although data items do not match the variables, no error message has been 

printed. When we attempt to read a real number for an int variable. The integer part is assigned 

to the variable, and the truncated decimal part is assigned to the next variable. 

Note   The character ‘2’ is assigned to the character variable c. 

Program 

  main  ( ) 

  { 

  int a; 

  float b; 

  char c; 

  printf(‘’Enter values of a, b and c\n”); 

  if (scanf(“%d %f  %c’’, &a, &b, &c) == 3) 
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  printf(‘’a = %d b= %f c=%c\n’’, a, b, c); 

  else 

  printf(‘’Error in input.\n’’); 

  } 

 Output 

  Enter values of a,b and c 

  12  3.45 A 

  a = 12   b = 3.450000   c = A 

  Enter values of a, b and c 

  23  78   9 

  a = 23    b = 78.0000   c = 9 

  Enter values of a, b  and c 

  8  A  5.25 

  Error in input 

  Enter values of a, b and c 

  Y  12  67 

  Error in input. 

  Enter values of a , b  and c  

  15.75   23  X 

  a = 15   b = 0.750000 = 2 

Fig.4.8 Detection of errors in scanf input 
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Commonly used scanf format codes are given in Table 4.2 

Table 4.2 Commonly used scanf Format codes 

Code Meaning 

%c 

%d 

%e 

%f 

%g 

%h 

%i 

%o 

%s 

%u 

%x 

%[..] 

 

read a single character 

read a decimal integer 

read a floating point value 

read a floating point value 

read a floating point value 

read a short integer’ 

read a decimal, hexadecimal or 

octal integer 

read an octal integer 

read a string 

read an unsigned decimal integer 

read hexadecimal integer 

read a string of word(s) 

 

The following letters may be used as prefix for certain conversion characters 

 h for short integers 

 i for long integers or double 

 L  for long double 

Note: C99  adds some more format codes. See the Appendix ‘C99’ Features’’’ 

Point to remember while using scanf 

If we do not plan carefully, some ‘crazy’ things can happen with scanf. Since the I/O 

routines are not a part of C languages, they are made available either as a separate module of the 

C library or as a part of the operating system (like UNIX). New features are added to these 

routines from time to time as new versions of systems are released. We should consult the 
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system reference manual before using these routines. Given below are some of the general points 

to keep in mind while writing a scanf statement. 

1. All function arguments, except the control string, must be pointers to variables. 

2. Format specifications contained in the control string should match the arguments in 

order. 

3. Input data items must be separated by spaces and must match the variables receiving 

the input in the same order. 

4. The reading will be terminated, when scanf encounters a ‘mismatch’ of data or a 

character that is not valid for the value being read. 

5. When searching for a value, scanf ignores line boundaries and simply looks for the 

next appropriate character. 

6. Any unread data items in a line will be considered as part of the data input line to the 

next scanf call. 

7. When the field width specifier w is used, it should be large enough to contain the 

input data size. 

Rules for scanf 

 Each variable to be read must have a field specification 

 For each field specification, there must be a variable address of proper type. 

 Any non-whitespace character used in the format string must have a matching 

character in the user input. 

 Never end the format string with whitespace. It is a fatal error! 

 The scanf reads until: 

o A whitespace character is found in a numeric specification, or 

o The maximum number of characters have been read or 

o An error is detected, or’ 

o The end of file is reached 
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4.5 FORMATTED OUTPUT 

We have seen the use of printf function for printing captions and numerical results. It is 

highly desirable that the outputs are produced in such a way that they are understandable and are 

in an easy-to-use form. It is therefore necessary for the programmer to give careful consideration 

to the appearance and clarity of the output produced by his program. 

 The printf statement provides certain features that can be effectively exploited to control 

the alignment and spacing of print-outs on the terminal. The general from of printf statement is: 

  printf(‘’control string’’, arg1, arg2,......argn); 

Control string consists of three types of items: 

1. Characters that will be printed on the screen as they appear. 

2. Format specifications that define the output format for display of each item. 

3. Escape sequence characters such as /n, /t, and /b. 

The control string indicates how many arguments follow and what their types are. The arguments 

arg1, arg2,........argn are the variables whose values are formatted and printed according to the 

specifications of the control string. The arguments should match in number, order and type with 

the format specifications. 

 A simple format specification has the following form. 

   % w.p type – specifier 

Where w is an integer number that specifies the total number of columns for the output value and 

p is another integer number that specifies the number of digits to the right of the decimal point 

(of a real number) or the number of characters to be printed from a string. Both w and p are 

optional. Some examples of formatted printf statement are: 

   printf(‘’Programming in C’’); 

   printf(‘   ‘); 

   printf (‘’\n’’); 
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   printf(‘’’%d’’ ,x); 

   printf(‘’a = %f/n  b  = %f’’, a, b);     

   printf(‘’sum = %d’’, 1234); 

   printf(‘’\n\n’’); 

printf never supplies a newline automatically and therefore multiple printf statements may be 

used to build one line of output. A newline can be introduced by the help of a newline character 

‘’/n’’ as shown in some of the examples above. 

Output Of Integer Numbers 

The format specification for printing an integer number is 

    % w  d 

where w specifies the minimum field width for the output. However, if a number is greater than 

the specified field width it will be printed in full, overriding the minimum specification. d 

specifies that the value to be printed is an integer. The number is written right-justified in the 

given field width. Leading blanks will appear as necessary. The following examples illustrate the 

output of the number 9876 under different formats: 

Format                  Output 

printf(‘’%d’’, 9876)     

printf(‘’%6d’’, 9876)    

printf(‘’%2d’’, 9876)  

printf(‘’%-6d’’9876)  

printf(‘’%06d’’9876)  

 

9 8 7 6 

  9 8 7 6 

9 8 7 6 

9 8 7 6   

0 0 9 8 7 6 
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It is possible to force the printing to be left-justified by placing a minus sign directly after the % 

character, as shown in the fourth example above. It is also possible to pad with zeros the leading 

blanks by placing a 0(zero) before the field width specifier as shown in the last item above. The 

minus(-) and zero (0) are known as flags. 

       Long integers may be printed by specifying id in the place of d in the format specification. 

Similarly, we may use hd for printing short integers. 

Program  4.9 

The program in fig. 4.9 illustrates the output of integer numbers under various formats. 

Program 

  main ( ) 

  { 

  int m = 12345; 

  long n= 987654; 

  printf(‘‘%d\n’’,m); 

  printf(‘’%10d\n’’,m); 

  printf(‘’%10d\n’’,m);    

  printf(‘’%-10d\n’’,m); 

  printf(‘’%101d\n’’,n); 

  printf(‘’%101d\n’’,-n); 

  } 

Output 

  12345 



129 

 

      12345 

  0000012345 

  12345 

        987654   

- 987654 

Fig. 4.9 Formatted output of integers 

Output of Real Numbers 

 The output of a real number may be displayed in decimal notation using the following 

specification: 

  % w p f 

 The integer w indicates the minimum number of positions that are to be used for the 

display of the value and the integer p indicates the number of digits to be displayed after the 

decimal point (precision). The value, when displayed, is rounded to p decimal places and printed 

right-justified in the field of w columns. Leading blanks and trailing zeros will appear as 

necessary. the default precision is 6 decimal places. The negative numbers will be printed with 

the minus sign. The number will be displayed in the form [-] mmm-nnn. 

We can also display a real number in exponential notation by using the specification: 

   % w. p. e 

The display takes the form 

   [-] m.nnnnne [-] xx 

Where the length of the string of n’ is specified by the precision. The default precision is 6. The 

field width w should satisfy the condition. 

   w. p+7 

 The value will be rounded off and printed right justified in the field of w columns. 
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Padding the leading blanks with zeros and printing with left-justification are also possible by 

using flags 0 or –before the field width specifier w. 

 The following examples illustrate the output of the number y = 98.7654 under different format 

specification: 

 Format     Output               

    

printf(‘’%7.4f’’,y)  

printf(‘’%7.2f”,y)   

printf(‘’%7.2f”,y)  

printf(‘%f”,y)                          

printf(“%10.2e”,y) 

printf(‘%11.4e’’,-y) 

printf(‘’%-10.2e’’,y) 

printf’%e’’.y) 

 

Some systems also support a special field specification character that lets the user define the field 

size at run time. This takes the following form: 

  printf(‘’%’’,’f’,width, precision, number); 

In the case, both the field width and the precision are given as arguments which will supply the 

values for w and p. for example, 

  printf(‘’%’’.’f’,7.2, number); 

Is equivalent to 

9 8 - 7 6 5 4 

  9 8 - 7 7 

9 8 - 7 7   

9 8 - 7 6 5 4 

- - 9 - 8 8 E + 0 1 

- 9 - 8 7 6 5 e + 0 1 

9 - 8 8 e + 0 1   

9 - 8 7 6 5 4 0 e + 0 1 
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  printf(‘’%7.2f’, number); 

 The advantage of this format is that the values for width and precision may be supplied at 

run time, thus making the format a dynamic one. For example, the above statement can be used 

as follows: 

  int width = 7; 

  int precision = 2; 

  ............... 

  ................ 

  printf(‘’%f’’, width, precision, number); 

Program 4.10 

All the options of printing a real number are illustrated in fig 4.10 

Program  

  main  ( ) 

  { 

   float y = 98.7654 

  printf(‘’%7.4f\n’’,y); 

  printf(‘’%f\n’’,y); 

  printf(%7.2f\n’’,y); 

  printf(‘’%-7.2f\n’’,y); 

  printf(‘’%07.2f\n’’,y); 

  printf(‘’%f’’,7,2,y); 

  printf(‘’\n’’);   
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  printf(‘’%10.2e\n’’,y); 

  printf(‘’%12.4e\n’’,y); 

  printf(‘’%-10.2e\n’’,y); 

  printf(‘’%e\n’’,y); 

  } 

Output 

  98.7654 

  98.765404 

  98.77 

  98.77 

  0098.77 

  98.77 

  9.8e+001 

  -9.8765e+001 

  9.8e+001 

  9.87654e+001 

Fig 4.10 Formatted output of real numbers 

Printing of a Single Character 

 A single character can be displayed in a desired position using the format 

    %wc 
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 The character will be displayed right-justified in the field of w columns. We can make the 

display left-justified by placing a minus sign before the integer w. The default value for w is 1. 

Printing of String 

 The format specification for outputting strings is similar to that of real numbers. It is of 

the form where w specifies the field width for display and p instructs that only the first p 

characters of the string are to be displayed. The display is right-justified. 

 The following examples show the effect of variety of specifications in printing a string 

‘’NEW DELHI 110001’’, containing 16 characters (including banks). 

Specification       Output 

12345678901234567890  

                                      1   2    3   4    5     6   7    8    9    0   1    2   3    4     5   6     7   8   9     0  

%s 

%20S 

%20.10s 

%.5s 

%-20.10s 

%5s 

Program 

  main () 

  { 

  char x = ‘A’; 

  char name[20] = ‘ANIL KUMAR GUPTA’’; 

N E W  D E L H I  1 1 0 0 0 1     

    N E W  D E L H I  1 1 0 0 0 1 

          N E W  D E L H I  

N E W  D                

N E W  D E L H I            

N E W  D E L H I  1 1 0 0 0 1     
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  printf(‘’COURT OF CHARACTERS\n\n’’); 

  printf(‘’%c/n%3c/n%5c/n’’,x,x,x); 

  printf(‘’%3c/n%c\n’’,x,x); 

  printf(‘’\n’’); 

  printf(‘’OUTPUT OF STRINGS/n/n’’); 

  printf(‘’%s\n’’,name); 

  printf(%20s\n’’,name); 

  printf(‘’%20.10s\n’’,name); 

  printf(‘’%.5s\n’’,name); 

  printf(‘’%-20.10s\n’’,name); 

  printf(‘’%5c\n’’,name); 

  } 

Output 

  OUT OF CHARACTERS 

  A 

        A 

   A 

                    A 

  A 

  OUTPUT OF STRINGS 

  ANIL KUMAR GUPTA 
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  ANIL KUMAR GUPTA 

              ANIL KUMAR 

  ANIL 

  ANIL KUMAR 

  ANIL KUMAR GUPTA 

Fig 4.11 Printing of characters and strings 

Mixed Data Output 

It is permitted to mix data types in one printf statement. For example, the statement of the 

type 

  printf(‘’%d  %f  %s  %c’’, a,b,c,d); 

is valid. As pointed out earlier, printf uses its control string to decide how many variables to be 

printed and what their are. Therefore, the format specifications should match the variables in 

number, order, and type. If there are not enough variables or if they are of the wrong type, the 

output result will be correct. 

Table 4.3 commonly used printf Format Codes 

Code Meaning 

%c 

%d 

%e 

%f 

%g 

 

print a single character 

print a decimal integer 

print a floating point value in exponent form 

print a floating point value without exponent 

print a floating point value either e-type or f-type 

depending on 
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%i 

%o 

%s 

%u 

%x 

print a signed decimal integer 

print an octal integer, without leading zero 

print a string 

print an unsigned decimal integer 

print a hexadecimal integer, without leading Ox 

 The following letters may be used as prefix for certain conversion characters. 

h for short integers 

I for long integers or double 

L for long double. 

Table 4.4 commonly used Output Format Flags 

Flag Meaning 

- 

+ 

0 

#(with 0 or x) 

#(with e,f or g) 

Output is left-justified within the field. Remaining field will be blank. 

+ or – will precede the signed numeric item. 

Causes leading zeros to appear. 

Causes octal and hex items to be preceded by 0 and Ox, respectively. 

Causes a decimal point to be present in all floating point numbers, even if it 

is whole number. Also  

 

Note  C99 adds some more format codes. See the Appendix ‘C99 Features’. 

Enhancing the Readability of Output 

Computer outputs are used as information for analysing certain relationships between variables 

and for making decisions. Therefore the correctness and clarity of outputs are of utmost importance. 

While the correctness depends on the solution procedure, the clarity depends on the way the output is 
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presented. Following are some of the steps we can take to improve the clarity and hence the readability 

and understand ability of outputs. 

1. Provide enough blank space between two numbers 

2. Introduce appropriate headings and variable names in the output.’ 

3. Print special messages whenever a peculiar condition occurs in the output. 

4. Introduce blank lines between the important sections of the output. 

The system usually provides two blank spaces between the numbers. However, this can be 

increased by selecting a suitable field width for the numbers or by introducing a ‘tab’ character 

between the specifications. For example, the statement 

  printf(‘’a = %d/t b = %d’’, a,b); 

will provide four blank spaces between the two fields. We can also print from them on two 

separate lines by using the statement 

   printf(‘’ a = %d/n b = 5d’’, a, b); 

messages and headings can be printed by using the character strings directly in the printf 

statement. 

Examples: 

   printf(‘’/n OUTPUT RESULTS /n’’); 

   printf(‘’Code/t Name/t Age/n’); 

   printf(‘’Error in input data/n’’); 

   printf(‘’Enter your name/n’’); 

Just Remember 

 While using getchar function, care should be exercised to clear any unwanted characters 

in the input stream. 

 Do not forget to include <stidio.h> headerfiles when using functions from standard 

input/output library. 
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 Do not forget to include <stype.h> header file when using functions from character 

handing library. 

 Provide proper field specifications for every variable to be read or printed.’ 

 Enclose format control strings in double quotes. 

 Do not forget to use address operator & for basic type variables in the input list of scanf 

 Use double quotes for character string constants. 

 Use single quotes for single character constants. 

 Provide sufficient field with to handle a value to be printed.  

 Be aware of the situations where output may be imprecise due to formatting. 

 Do not specify any precision in input field specifications. 

 Do not  provide any white-space at the end of format string of a scanf statement. 

 Do not forget to close the format string in the scan or prinf statement with double quotes. 

 Using an incorrect conversion code for data type being read or written will result in 

runtime error. 

 Do not forget the comma after the format sting in scanf and printf statements. 

 Not separating read and writes an argument is an error. 

 Do not sue commas in the format string of a scanf statement. 

 Using an address operator & with a variables in the printf statement will result in runtime 

error. 

  Case Studies 

1. Inventory Report 

 Problem:   The ABC Electric Company manufactures four consumer products. Their inventory 

position on a particular day is given below. 

Code Quantity Rate(Rs) 

F105 

H220 

275 

107 

575.00 

99.95 
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I019 

M315 

321 

89 

215.50 

725.00 

It is required to prepare the inventory report table in the following format: 

INVENTORY REPORT 

 The value of each item is given by the product of quantity and rate. 

Program:  The program given in fig.4.12 reads the data from the terminal and generates the 

required output. The program uses subscripted variables which are discussed in Chapter 7. 

Program 

  #define  ITEMS 4 

  main () 

  (/* BEGIN*/ 

    int i, quantity[5]; 

  float rate[5], value, total_value; 

  char code[5][5]; 

  /* READING VALUES*/ 

  i = 1; 

Code Quantity Rate Value 

--------- 

---------- 

---------- 

---------- 

--------- 

---------- 

---------- 

---------- 

--------- 

---------- 

---------- 

---------- 

Total value: 

--------- 

---------- 

---------- 

---------- 
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  while (i <= ITEMS) 

  { 

  printf(“Enter code, quantity, and rate:’’); 

  scanf(‘’%s %f’’, code[i], &quantity[i], &rate[i]; 

  i++; 

  } 

  /*.........printing of Table and Column Heading....*/ 

  printf(‘’\n\n’’) 

  printf(‘’......................INVENTORY REPORT        \n”); 

  printf(‘’..................................................\n”); 

  printf(‘’Code Quantity Rate value   \n”); 

  printf(‘’...........................................\n”); 

  /*...............Preparation of Inventory Position............./* 

   total value  =  0;  

   i = 1; 

   while (i  <=  ITEMS) 

   { 

       Value = quantity[i] * rate[i]; 

   printf(‘’%5s %10d  %10.2f  %e/n’’, code[i], quantity[i], 

   rate[i], value); 

  total_value += values; 
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  i++ 

  } 

  /*........Printing of End of Table....................*/ 

  printf(‘’..............\n”); 

  printf(‘’............Total Value = %e\n’’, total_value); 

  printf(‘’..........................\n’’);’ 

  }/*END */. 

Output 

   Enter code, quantity, and rate:F105 275  575.00 

  Enter code, quantity, and rate:H220  107  99.95 

  Enter code, quantity, and rate:I019  321  215.50 

  Enter code, quantity, and rate:M315  89  725.00 

    INVENTORY REPORT 

  Code  Quantity Rate  Value 

  F105  275  575.00  1.581250e+005 

  H220  107   99.95  1.069465e+004 

  I019  321  215.50  6.917550e+004 

  M315   89  725.00  6.452500e+004 

       Total value         =     3.025202e+005 

Fig 4.12 Program for inventory report 
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2. Reliability Graph 

Program :  The reliability of an electronic component is given by 

                       Reliability (r) = e-ƛt 

where ƛ is the component failture rate per hour and t is the time of operation in hours. A 

graph is required to determine the reliability at various operating times, from 0 to 3000 hours. 

The failure rate ƛ ( lambda) is 0.001.  

Problem 

   #include <math.h> 

   #define LAMBDA  0.001 

   main ( ) 

   { 

   double t; 

   float r; 

   int i, R; 

   for (i=1; i<=27;i++) 

   { 

      printf(‘’......’’); 

   } 

   printf(‘’\n’’);   

   for (t = 0; t<=3000; t+=150) 

   { 

   r = exp(- LAMBDA*t); 
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   R = (int)(50*r+0.5);  

   printf(‘’  \n’’); 

   for (i = 1; i<=R; i++) 

   { 

      printf(‘’*’’); 

   } 

      printf(‘’#\n’’);  

   } 

   for (i=1; i<3;i++) 

   { 

   printf(‘’ |\n’’); 

   } 

     } 

Output 

  ---------------------------------------------------------- 

  I******************************************# 

  I***************************************# 

  I*************************************# 

  I***********************************# 

  I*********************************# 

  I********************************# 
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  I*******************************# 

  I*****************************# 

  I***************************# 

  I************************# 

  I********************# 

  I****************# 

  I************# 

  I*******#   

  I****# 

  I**# 

   Fig 4.13 Program to draw reliability graph 

Program:   The program given in Fig.4.13 produces a shaded graph. The values of t are self-

generated by the for statement 

   for (t=0; t <=3000; t = t+150) 

in steps of 150. The integer 50 in the statement 

   R = (int)(50*r+0.5) 

is a scale factor which converts r to a large value where an integer is used for plotting the curve. 

Remember r is always less than 1. 
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5 DECISION MAKING AND BRANCHING 

Key Terms 

Decision-making statements | switch statement | conditional operator | goto statement | 

infinite loop. 

5.1 INTRODUCTION 

We have seen that a C program is a set of statements which are normally executed 

sequentially in the order in which they appear. This happens when no options or no repetitions of 

certain calculations are necessary. However, in practice, we have a number of situations where 

we may have to change the order of execution of statements based on certain conditions , or 

repeat a group of statements until certain specified conditions are met. This involves a kid of 

decision making to see whether a particular conditions has occurred or not and then direct the 

computer to execute certain statements accordingly. 

   C language possesses such decision-making capabilities by supporting the following 

statements: 

1. If statements 

2. Switch statement 

3. Conditional operator statement 

4. goto statement 

These statements are popularly known as decision-making statements. Since these statements 

‘control’ the flow of execution, they are also known as control statements. 

 We have already used some of these statements in the earlier examples. Here, we shall 

discuss their features, capabilities and applications in more detail. 

5.2    DECISION MAKING WITH IF STATEMENT 

The if statement is a powerful decision-making statement and is used to control the flow 

of execution of statements. It is basically a two-way decision statements and us used in 

conjunction with an expression. It takes the following form  

   if(test expression) 
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 It allows the computer to evaluate the expression first and then depending on whether the 

value of the expression (relation or condition) is ‘true’(or non-zero) or ‘false’ (zero), it transfers 

the control to a particular statement. This point of program has two paths to follow condition as 

shown in fig 5.1.  

Some examples of decision making, using if statements are: 

1. if   (bank balance is zero)         Entry 

       borrow money 

2. if   (room is dark) 

put on  lights        False 

3. if  (code is 1) 

person is male 

4. If (age is more than 55) 

                         Person is retired True 

                                                                                        Fig 5.1 Two-way branching 

      The if statement may be implement in different forms depending on the complexity of 

conditions to be tested. The different forms are: 

1. Simple if statement 

2. If..........else statement 

3. Nested if ......else statement 

4. else if ladder. 

We shall discuss each one of them in the next few section. 

5.3 SIMPLE IF STATEMENT 

 The general form of a simple if statement is 

   If (test expression) 

 

test expression 

              ? 
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   { 

    Statement-block; 

   } 

   Statement –x; 

 The ‘statement-block’ may be a single statement or a group of statements. If the test 

expression is true. The statement-block will he executed; 

otherwise the statement-block will be    Entry 

skipped and the execution will jump to the 

statement-x. Remember, when the condition  

is true both the statement-block and the statement                                       True 

are executed in sequence. This is illustrated in 

fig 5.2. 

   consider the following segment of a False 

program that is written for processing of marks 

obtained in an entrance examination. 

..................... 

................. 

if(category == SPORTS)  Fig.5.2 Flowchart of simple if control 

{ 

      mark = marks + bonus_marks;  

} 

 

test 

expression 

Statement - x 

Next statement 

Statement-block 
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 printf(‘’%f, marks); 

.............. 

.................. 

 The program tests the type of category of the student. If the student belongs to the 

SPORTS category, then additional bonus_marks are added to his marks before they are printed. 

For others, bonus_marks are not adde. 

Program 5.1 

The program in fig.5.3 reads four values a,b,c and d from the terminal and evaluates the ratio of 

(a+b) to (c-d) and prints the results. If c-d is not equal to zero. 

The program given in fig .5.3 has been run for tow sets of data to see that the paths function 

properly. The result of the first run is printed as, 

   Ratio = -3.181818. 

Program  

  main () 

  { 

      int a, b, c,d 

      float  ratio 

        printf(‘’Enter four integer values\n’’); 

      scanf(‘’%d %d %d, &a, &b, &c, &d); 

       if (c-d !=0) / * Execute statement block */. 

   { 

       ratio  = (float)(a+b)/(float)(c-d); 
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    printf(‘’Ratio = %f\n’’. Ratio); 

   } 

     } 

Output 

 Enter four integer values 

 12  23  34  45 

 Ratio = -3.181818 

 Enter four integer values 

 12 23 34 34 

Fig 5.3 Illustration of simple if statement 

 The second run has neither produced any results nor any message. During the second run, 

the value of (c-d) is equal to zero and therefore, the statements contained in the statement-block 

are skipped. Since no other statement follows the statement-block, program stops without 

producing any output. 

 Note the use of float conversion in the statement evaluating the ratio. This is necessary to 

avoid truncation due to integer division. Remember, the output of the first run-3.181818 is 

printed correct to six decimal places. The answer contains a round off error. If we wish to have 

higher accuracy, we must use double or long double data type. 

 The simple if is often used for counting purposes. The program 5.2 illustrates this. 

Program 5.2 

The program has to test two conditions, one for weight and another for height. This is done using 

the compound relation 

  if (weight < 50 && height > 170) 
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 This would have been equivalently done using two if statements as follows: 

  if (weight < 50) 

  if (height >170) 

  count = count +1; 

if the value of weight is less than 50, then the following statement is executed, which in turn is 

another if statement. This if statement tests height and if the height is greater than 170, then the 

count is incremented by 1. 

Program 

  main ( ) 

  {   

  int count, i; 

  float weight, height; 

 

  count = 0; 

  printf(‘’Enter weight and height for 10 boys\n’’); 

   

  for (i=1, i<= 10; i++); 

  { 

     scanf(‘’%f  %f’’, &weight, &height); 

  if  (weight  < 50 && height  > 170) 

     count = count  + 1; 

  } 
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  printf(‘’Number of boys with weight < 50 kg\n’’); 

  printf(‘’and height > 170 cm = %d\n’’, count); 

  } 

Output 

  Enter weight and height for 10 boys 

  45 176.5 

  55 174.2 

  47 168.0 

  49 170.7 

  54 169.0 

  53 170.5 

  49 167.0 

  48 175.0  

  47 167 

  51 170 

 Number of boys with weight < 50 kg 

 and height > 170 cm = 3 

Fig .5.4  Use of if for counting 

Applying De Morgan’s Rule 

 While designing decision statements, we often come across a situation where the logical 

NOT operator is applied to a compound logical expression, like !(x&&yIIz). However, a positive 
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logic is always easy to read and comprehend then a negative logic. In such cases, we may apply 

what is known as De Morgan’s rule to make the total expression positive. This rule is as follows: 

 ‘Remove the parentheses by applying the NOT operator to every logical expression 

component, while complementing the relational operators’’ 

That is, 

  x becomes  !x 

  !x becomes x 

  && becomes II 

  II becomes && 

Examples: 

!(x && Y II!z) becomes !x II !y && z 

!(x < =0 II ! condition ) becomes x >0 && condition 

5.4 THE IF.......ELSE STATEMENT 

 The if.... else  statement is an extension of the simple if statement. The general form is 

  if (test expression) 

   { 

  True-block statement(s) 

  } 

  else 

  { 

  false-block statement(s) 

  } 

  statement-x 

if the test expression is true, then the true-block statement(s), immediately following the if 

statements are executed; otherwise, the false-block statement(s) are executed. In either case, 
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either true-block or false-block will be executed, not both. This is illustrated in fig. 5.5. in both 

the cases, the control is transferred subsequently to the statement-x 

 

  

 

 

 

 

   

                                    Fig 5.5 Flowchart of if .........else control 

 Let us consider an example of counting the number of boys and girls in a class. We use 

code 1 for a boy and 2 for a girl. The program statement to do this may be written as follows: 

    ................... 

    ...................  

    if ( code ==1) 

       boy = boy + 1; 

    if (code ==2 ) 

       girl = girl + 1; 

    .................... 

    ................... 

The first test determines whether or not he student is a boy. If yes, the number of boys is 

increased by a and the program continues to the second test. The second test again determines 

whether the student is a girl. This is unnecessary. Once a student is identified as a boy, there is 

test 

expression 

              ? 

True- block 

statement 

False-block 

statement 

Statement 
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no need to test again for a girl. A student can be either a boy or a girl, not both. The above 

program segment can be modified using the else clause as follows: 

   .......................... 

   ......................... 

   if(code ==1) 

     boy = boy +1; 

   else 

         girl = girl + 1; 

   xxxxxxxx 

   ....................... 

Here, if the code is equal to 1, the statement boy = boy +1 ; is executed and the control is 

transferred to the statement xxxxx, after skipping the else part. If the code is not equal to 1, the 

statement boy = boy+1 is skipped and the statement in the else part girl = girl +1; is executed 

before the control reaches the statement xxxxxxx. 

    Consider the program given in fig. .5.3. When the value (c-d) is zero, the ratio is not calculated 

and the program stops without any message. In such cases we may not know whether the 

program stopped due to a zero value or some other error. This program can be improved by 

adding the else clause as follows: 

   ......................... 

   ....................... 

   if(c-d !=0) 

     { 

    ratio = (float)(a+b)/(float)(c-d); 
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    printf(‘’Ratio = %f\n’’,ratio); 

    } 

   else 

   printf(‘’c-d is zero\n’’); 

   ......................... 

   ....................... 

Program 5.3 

A program to evaluate the power series. 

  ݁𝑥 = ͳ + 𝑥2ଶ! + 𝑥2ଷ! +.............+ 𝑥2𝑛! , Ͳ < ݔ < ͳ 

Is given in fig 5.6 it uses if .........else to test the accuracy. 

The power series contains the recurrence relationship of the type 

  𝑛ܶ= 𝑛ܶ−ଵ ቀ𝑥𝑛ቁ ݊ 𝑟݋݂  > ͳ 

 T1 = x for n=1 

 T0 = 1 

If tn-1 (usually known as previous term) is known, then Tn(known as present term) can be easily 

found by multiplying the previous term by x/n. Then 

  ex = T0 + T1 + T2 +............+ Tn 

Program  

   #define ACCURACY 0.00001 

   main  ( ) 

   { 
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   int n, count; 

   float x, term, sum; 

   printf(‘’Enter value of x;’’); 

   scanf(‘’%f’’, &x); 

   n = term = sum = count =1; 

   while (n <+100( 

   { 

   term = term * x/n; 

   sum = sum + term 

   count = count + 1; 

   if (term < ACCURACY) 

   n = 999; 

    else 

   n = n+1; 

   } 

   Printf(‘’Terms = %d sum = %f\n’’, count, sum); 

   } 

Output 

  Enter values of f;0 

  Terms = 2 sum= 1.00000 

  Enter values of x;0.1 
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  Terms = 5 sum = 1.105171 

  Enter value of x;0.5 

  Terms = 7 sum = 1.648720 

  Enter values of f; 0.75 

  Terms = 8 sum = 2.116997 

  Enter value of x;0.99 

  Terms = 9 sum = 2.691232 

  Enter value of x;1 

  Terms = 9 sum = 2.718279 

Fig 5.6 Illustration of if ..........else statement 

 The program uses count to count the number of terms added. The program stops 

when the value of the term is less than 0.0001(ACCURACY). Note that when a term is less than 

ACCURACY, the value of n is set equal to 999 ( a number higher than 100) and therefore the 

while loop terminates. The results are printed outside the while loop. 

5.5 NESTING OF IF  ...ELSE STATEMENTS 

When a series of decisions are involved, we may have to use more than one if........else statement 

in nested form as shown below: 

 The logic of execution is illustrated in fig. 5.7 if the condition-1 is false, the statement -3 

will be executed; otherwise it continues to perform the second test. If the condition-2 is true. 
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  if     (test condition – 1)  

      {       if    (test  condition – 2); 

   {    statement – 1; 

   } 

    else 

   { 

        statement – 2; 

   } 

     } 

       else 

   {  

   statement – 3; 

   } 

   statement - x 

The statement-1 will be evaluated; otherwise the statement-2 will be evaluated and then the 

control is transferred to the statement-x. 

 A commercial bank has introduced an incentive policy of giving bonus to all its deposit 

holders. The policy is as follows. A bonus of 2 per cent of the balance held on 32stt December is 

given to everyone, irrespective of their balance, and 5 per cent is given to female account 

holder’s if their balance is more than Rs.5000. this logic can be coded as follows: 

  ............. 

  if( sex is female) 

  {  

  if ( balance > 5000) 

   Bonus = 0.,05 * balance; 

  else 

    bonus = 0.02 * balance; 

  } 
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  else 

  { 

  bonus = 0.02 * balance; 

  } 

  balance = balance + bonus; 

  .............. 

  .............. 

 

             Entry 

 

           False 

 

 

 

 

              False                          True 

 

 

 

 

 

 

 

Test 
Conditionn1 

? 

Test 
Conditionn2 

? 

 

Statement – 3  Statement - 2 Statement - 1 

Statement - 4 

Statement - 5 
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 When nesting, care should be exercised to match every if with an else. consider the 

following alternative to the above program9which looks right at the first sight); 

   if( sex is female) 

   if ( balance > 5000) 

    bonus = 0.05 * balance; 

     else 

    bonus = 0.02 * balance; 

   balance = balance +bonus; 

 There is an ambiguity as to over which if the else belongs to. In C, an else in linked to the 

closeset non-terminated. If. Therefore, the else is associated with the inner if and there is no else 

option for the outer if. This means that the computer is typing to execute the statement 

   balance = balance + bounus 

without really calculating the bonus for the male account holders. 

Consider another alternative, which also looks correct; 

   if(sex is female) 

    { 

   if (balance > 5000) 

   bounus = 0.05 * balance; 

   } 

   else 

   bonus = 0.02 * balance; 

   balance = balance+bonus; 
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 In this case, else is associated with the outer. If and therefore bonus is calculated for he male 

account holders. However bonus for the female account holders, whose balance is equal to or 

less than 50000 is not calculated because of the missing else option of r the inner.if 

Program 5.4 

The program in fig. 5.8 selects and prints the largest of the three numbers using nested if.....else 

statements. 

Program 

  main () 

  { 

  float A, B,C; 

  printf(‘’Enter three values \n’’); 

  scanf(‘’%f %f %f’’, &A, &B, &C); 

  printf(‘’\nLargest value is ‘’); 

  if (A>B) 

  { 

  If (A>C) 

  printf(‘’%f\n’’,A); 

  else 

  printf(‘’%f\n’’,C); 

  } 

  else 

  { 
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     if(C>B) 

  printf(‘’%f\n’’,C);   

  else 

  printf(‘’%f\n\n’’,B); 

     } 

  } 

Output 

  Enter three values 

  23445 67379 88843 

  Largest value is 88843.000000 

Fig 5.8   Selecting the largest of three numbers 

Dangling Else Problem 

One of the classic problems encountered when we start using nested if....else statements 

is he dangling else. This occurs when a matching else is not available for an if. The answer to 

this problem is very simple. Always match an else to the most recent unmatched if in the current 

block. In some cases. It is possible that the false condition is not required. In such situations, else 

statement may be omitted. 

  ‘else is always paired with the most recent unpaired if’ 

5.6 THE ELSE IF LADDER 

 There is another way of putting its together when multipath decisions are involved. A 

multipath decision is a chain of its in which the statement associated with each else is an if, it 

takes the following general form 
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  if (conditional) 

       statement-1; 

  else if ( condition 2) 

   statement-2; 

      else if ( condition 3) 

   statement-3; 

         else if ( condition n) 

   statement –n; 

                   else 

         default-statement; 

    statement –x 

 

 This construct is known as the else if ladder. The conditions are evaluated from the top 

(of the ladder), downwards. As soon as a true condition is found, the statement associated with it 

is executed and the control is transferred to the statement-x (skipping the rest of the ladder). 

When all the n conditions become false, then the final else containing the default-statement will 

be executed. Fig.5.9 shows the logic of execution of else if ladder statements. 

 Let us consider an example of grading the students in an academic institution. The 

grading is done according to the following rules 

  Average marks   grade 

  80 to 100    Honours 

  60 to 79    First Division   

  50 to 59    Second Division 
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  40 to 49    Third Division 

  0 to 39     Fail 

This grading can be done using the else if ladder as follows: 

   if(marks >79) 

     grade = ‘Honour’’; 

   else if ( marks >59) 

     grade = ‘’First Division’’; 

   else if (marks >49) 

      grade = ‘Second Division’’; 

   else if ( marks >39) 

      grade = ‘Third Division’’; 

   else 

      grade = ‘Fail’; 

   printf(‘%ss\n”,grade); 

  consider another example given below: 

   ---------- 

   ---------- 

   if (code ==1) 

     colour = ‘RED’; 

   else if (code ==2) 

       colour = ‘GREEN’; 



165 

 

   else if ( code ==3) 

      colour = ‘WHITE’; 

    ---------- 

    --------------- 

  Code numbers other than 1,2 or 3 are considered to represent YELLOW colour. The 

same results can be obtained by using nested if.....else statements. 

    if (code !=1) 

 if( code!=2) 

       if(code !=3) 

          colour = ‘YELLOW’; 

    else 

           colour = ‘WHITH’; 

    else 

          colour = ‘GREEN’; 

    else 

         colour = ‘RED’; 

 In such situations, the choice is left to the programmer. However, in order to choose an if 

structure that is both effective and efficient, it is important that the programme is fully aware of 

the various forms of an if statement and the rules governing their nesting. 
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Fig.5.9 Flow chart of else..... if  ladder 

Program 5.5 

An electric power distribution company charges its domestic consumers as follows: 

  Consumption units  Rate of Charge 

  0 – 200   Rs. 0.50 per unit 

Condition-1 

Statement-1 

Default 

statement 

Statement-n 

Statement-3 

Statement-2 

Condition-2 

Condition-3 

Condition-n 

Statement -x Next statement 
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  201 -400   Rs. 100 plus Rs. 0.65 per unit excess of 200 

  401 – 600   Rs. 230 plus Rs. 0.80 per unit excess of 400 

  601 and above   Rs. 390 plus Rs. 1.00 per unit excess of 600 

 The program in fig.5.10 reads the customer number and power consumed and print the 

amount to be paid by the customer. 

Program 

   main( ) 

   { 

    int units, custnum; 

    float charges; 

    printf(“Enter CUSTOMER NO. and UNITS  consumed\n”)  

    scanf(“%d %d”, &custnum, &units); 

    if(units <=200) 

     charges = 0.5 * units; 

    else if (units <=400) 

     charges = 100 + 0.65 * (units – 200) 

     else if (units <=600) 

     charges  = 230 + 0.8 * (units – 400); 

     else 

     charges = 390 + (units – 600); 

    printf(“\n\n CUSTOMER No: %d: charges = %.2f\n”, 

     custnum, charges); 



168 

 

} 

 Output 

   Enter CUSTOMER No.UNITS consumed 101 150 

   Customer No:101 Charges = 75.00 

   Enter CUSTOMER No. and UNITS consumed 202 225 

   Customer No: 202 Charges = 116.25 

   Enter CUSTOMER NO. and UNITS consumed 303 375 

   Customer No. 303 Charges = 213.75 

   Enter CUSTOMER NO. and UNITSS consumed 404 520 

   Customer No. 404 Charges = 326.00 

   Enter CUSTOMER NO.and UNITS  consumed 505 625 

   Customer no. 505 Charges 415.00 

Fig 5.10 Illustration of else.....if ladder 

Rules of Indentation 

When using control structures, a statement often controls many other statements that follow 

it. In such situations it is a good practice to use indentation to show that the indented statements 

re dependent on the preceding controlling statement. Some guidelines that could be followed 

while using indentation are listed below: 

 Indent statement that are dependent on the previous statements; provide at least three 

spaces of indentation. 

 Align vertically else clause with their matching if clause. 

 Use braces on separate lines to identify a block of statements. 

 Indent the statements in the block by at least three spaces to the right of the braces. 

 Align the opening and closing braces. 
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 Use appropriate comments to signify the beginning and end of blocks. 

 Indent the nested statements as per the above rules. 

 Code only one clause or statement on each line 

5.7   THE SWITCH STATEMENT 

We have seen that when one of the many alternatives is to be selected, we can use an if 

statement to control the selection. However, the complexity of such program increases 

dramatically when the number of alternatives increases. The program becomes difficult to read 

and follow. At times, it may confuse even the person who designed it. Fortunately, C has a built-

in multiway decision statement known as a switch. The swithch statement tests the value of a 

given variable (or expression) against a list of case values and when a match is found, a block of 

statements associated with that case is executed. The general form of the switch statement is as 

shown below: 

   switch ( expression) 

   { 

      case value-1; 

     block-1 

    break; 

   case value-2 

    block-2 

    break; 

   .............. 

   ............. 

   default; 

    default-block 
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    break; 

   } 

   statement=x; 

 The expression is an integer expression or characters. Value-1, value,2 ......are constants 

or constant expressions ( evaluable to an integral constant ) and are known as case labels. Each 

of these values should be unique within a switch statement. Block-1, block-2....are statement lists 

and may contain zero or more statement. There is no need to put braces around these blocks. 

Note that case labels en with a colon(:). 

 When the switch is executed, the value of the expression is successfully compared 

against the values value-1, value-2.... if a case is found whose value matches with the value of 

the expression, then the block of statements that follows the case are executed. 

 The break statement at the end of each block signal the end of a particular case and 

causes an exit from the switch statement, transferring the control to the statement-x following the 

switch. 

 The default is an optional case. When present it will be executed if the value of the 

expression does not match with any of the case values. If not present, no action takes place if all 

matches fail and the control goes to the statement-x (ANSI C permits the use of as many as 257 

case labels); 

 The selection process of switch statement is illustrated in the flow chart shown in fig 5.11 
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          Expression=value-1 

  

 Expression=value2 

    (no match)default 

     

 

 

The switch statement can be used to grade the students as discussed in the last section. This is 

illustrated below: 

   ----- 

   ----- 

   index = marks/10 

   switch ( index) 

   { 

      case 10; 

       case 9; 

      case 8; 

Switch 

expression 

block1 

Default 

block 

Statement-x 

block1 
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    grade = ‘Honours’; 

    break; 

      case 7: 

      case 6; 

    grade = ‘’First Division’; 

    break; 

      case 5;     

    grade = ‘Second Division’; 

    break; 

      case  4; 

    grade = ‘Third Division’’; 

    break;  

      default: 

    grade = ‘Fail’’; 

    break; 

   } 

   printf(‘’%s/n’’, grade); 

   --------- 

   ---------- 

Note that we have used a conversion statement 

   Index = marks / 10; 
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Where, index is defined as an integer. The variable index takes the following integer values. 

   Marks            Index 

   100    10 

   90-99    9 

   80-89    8  

   70-79    7 

   60-69    6  

   50-59    5 

   40-49    4 

  . .....   . ...... 

0 0 

This segment of the program illustrates two important features. First, it uses empty cases. 

The first three cases will execute the same statements 

   grade = ‘Honours’’; 

    break; 

Same is the case with 7 and case6. Second, default condition is used for all other cases 

where a mark is less than 40. 

 The switch statement is often used for menu selection. For example: 

   -------- 

   -------- 

   printf(‘’TRAVEL GUIDE\n\n’’); 

   printf(‘’ A Air Timings\n’’); 
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   printf(‘’T Train Timings\n’’); 

   printf(‘’B Bus Service\n’’); 

   printf(‘’X To Skip\n’’); 

   printf(‘’\n Enter your choice\n’’); 

   character = getchar(); 

   switch (character) 

   { 

   case ‘A’  : 

   air – display (); 

   break; 

  case ‘B’    : 

   bus-display() 

   break; 

  case ‘T’  : 

   train-dispaly (); 

   break; 

  default  : 

    printf(‘’ No choice \n’’); 

  } 

  ---------- 

  --------- 



175 

 

It is possible to nest the switch statements. That is, a switch may be part of a case statement. 

ANSI C permits 15 levels of nesting. 

Rules for switch statement 

 The switch expression must be an integral type. 

 Case labels must be constants or constant expressions. 

 Case labels must be unique. No two labels can have the same value. 

 Case labels must end with colon. 

 The break statement transfers the control out of the switch statement. 

 The break statement is optional. That is, two or more case labels may belong to the same 

statements. 

 The default label is optional. If present, it will be executed when the ex-pression does not 

find matching case label. 

 There can be at most one default label. 

 The default may be placed anywhere but usually placed at the end. 

 It is permitted to nest switch statements. 

Program 5.6 

Write a complete C program that reads a value in the range of 1 to 12 and print the  name of that 

month and the next month. Print error for any other input value. 

Program  

  #include<stdio.h> 

  #include<conio.h> 

  #include<stdlib.h> 

  void main () 

  { 
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  Char month[12][20] = {‘’January’’, ‘’february’’,’’March’’, April’’, May’’, 

‘’June’’, ‘’July’’,’August’, September’’,’’October’, ‘November’’, ‘’December’’}; 

   int i; 

   printf(‘’Enter the month value:’’); 

  scanf(‘’%d’’, &i); 

  

  if(i<1 Iii>12) 

  { 

  printf(‘’Incorrect value!!/n Press any key to terminate the program....’’); 

  getch( ); 

  exit(0); 

  } 

  if(i!=12) 

  printf(‘’%s followed ny %s, month[i-1], month[i]); 

  else 

  printf(‘’%s followed by %s’’, month[i-1], month[0]; 

  getch(); 

  } 

Output 

 Enter the month value: 6 

 June followed by July 

 Fig 5.12 Program to read and print name of months in the range of 1 and 12 
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5.8 THE? : OPERATOR 

The C language has an unusual operator, useful for making two-way decisions. This 

operator is a combination of ? and:, takes three operands. This operator is popularly known as the 

conditional operator. The general form of use of the conditional operator is as follows: 

 Conditional expression? expression 1 : expression 2 

 The conditional expression is evaluated first.  If the result is non-zero, expression1 is evaluated 

and is returned as the value of the conditional expression. Otherwise, expression2 is evaluated 

and its value is returned. For example, the segment 

   if ( x <0) 

      flag = 0; 

      else  

      flag = 1; 

can be written as  

   flag = (x<0) ? 0:1 

Consider the evaluation of the following function: 

 y = 1.5x + 3 for x≤   2 

 y = 2x + 5 for x>2 

 This can be evaluated using the conditional operator as follows: 

  Y = (x > 2) ? (2 * x + 5) : (1.5 * x + 3); 

The conditional operator may be nested for evaluating more complex assignment decisions. For 

example, consider the weekly salary of a salesgirl who is selling some domestic products. If x is 

the number of products sold in a week, her weekly salary is given by 

           Salary =  { Ͷx + ͳͲͲ  for x < ͶͲ͵ͲͲ          for x =  ͶͲͶ.ͷx +  ͳͷͲ    for x < ͶͲ     
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This complex equation can be written as 

  Salary = ( x!= 4) ? ((x <40) ? (4 *x+100) : (4.5 * x+150)) : 300; 

The same can be evaluated using if ........else statements as follows: 

   if    ( x<= 40) 

      if (x <40) 

         salary = 4 * x+100; 

   else 

   salary = 300; 

   else 

   salary = 4.5 * x +150;  

 When the conditional operator is used, the code becomes more concise and perhaps, more 

efficient. However, the readability is poor. It is better to use if statements when more than a 

single nesting of conditional operator is required. 

Program 5.7 

An employee can apply for a loan at the beginning of every six months, but he will be sanctioned 

the amount according to the following company rules: 

Rule 1:  An employee cannot enjoy more than two loans at any point of time. 

Rule 2: Maximum permissible total loan is limited and depends upon the category of the 

employee. 

A program to process loan applications and to sanction loans is given in fig 5.13. 

Program  

   #define MAXLOAN 50000 
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   main () 

   { 

    long int loan1, loan2, loan3, sancloan, sum23; 

   printf(‘’Enter the values of previous two loans :\n’’); 

   scanf(‘’%1d %1d, &loan1, &loan2); 

   printf(‘’/n E?nter the value of new loan:\n’’); 

   scanf(‘’%1d, &loan3); 

   sum23 = loan2 + loan 3; 

   sanloan = (loan1>0) ? 0 : ((sum23>MAXLOAN)? 

    MAXLOAN – loan2 : loan3; 

   printf(‘’\n\n’’); 

   printf(‘’Previous loans pending:\n%1d\n’’, loan1,loan2); 

    printf(‘’Loan requested = %1d\n’’, loan3); 

   printf(‘’Loan sanctioned = %1d\n’’, sancloan);   

 } 

Output 

  Enter the values of previous two loans: 

  0 20000 

  Enter the value of new loan:  

  450000 

  Previous loans pending: 
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  0 20000 

  Loan requested = 45000 

  Loan sanctioned = 30000 

  Enter the values of previous two loans: 

  1000 15000 

  Enter the value of new loan: 

  25000 

  Previous loans pending: 

  1000 15000 

  Loan requested = 25000 

  Loan sanctioned = 0 

  Fig 5.13 Illustration of the conditional operator 

 The program uses the following variables: 

  loan3   - present loan amount requested 

  loan2   - previous loan amount pending 

  loan1   - previous to previous loan pending 

  sum23   - sum of loan2 and loan3 

  sancloan  - loan sanctioned 

 The rules for sanctioning new loan are: 

1. loan1 should be zero 

2. loan2 + loan 3 should not be more than MAXLOAN. 
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Note the use of long int type to declare variables. 

Program 5.8  

Write a program to determine the Greatest Common Divisor (GCD) of two numbers. 

Algorithm 

Step1 - start  

Step2 - Accept the two numbers whose GCD is to be found(num1, num2) 

Step3 - Call function GCD(num1, num2) 

Step4 - Display the value returned by the function call GCD(num1, num2) 

Step5 - Stop 

GCD(a,b) 

Step1 - Start 

Step2 - If b>a goto step 3 else goto step 4 

Step3 - Return the result of the function call GCD(b,a) to the calling function 

Step4 - If b = 0 goto Step 5 else goto step6 

Step5 - Return the value a to the calling function 

Step6 - Return thFCe result of the function call GCD(b,a ,mod b) to the calling function 

Program 

 #include<stdio.h> 

 #include<conio.h> 

 #include<math.h> 
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int GCD (int m, int n); 

void main () 

{ 

 int num1, num2; 

 clrscr( )j; 

 

 

 

 

 

  

 

 

 

 

 

  

printf(‘’Enter the two numbers whose GCD is to be found:’’); 

 scanf(‘’%d %d’’, &num1, &num2); 

 printf(‘’\nGCD of %d and %d is %d\n”, num1, num2, GCD( num1, num2)); 

 getch(); 

Start 

Read num1,num2 

Call GCD(nim1,num2) 

Display the return value 

f GCD(num1,num2) 

Stop

    GCD(num1,num2) 

Is b>a? 

Is b>a? 
Return 

GCD(b,a) 

Stop

Return 

GCD(b,a%b
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 } 

int GCD(int a , int b) 

{ 

If(b>a) 

 return GCD(b,a); 

 if (b==0) 

return a; 

else 

return GCD(b,a%b); 

} 

 

Output 

 Enter the two numbers whose GCD is to be found: 18 12 

GCD of 18 and 12 is 6 

Fig 5.14 Program to determine GCD of two numbers 

Some Guidelines for Writing Multiway Selection Statements 

Complex multiway selection statements require special attention. The readers should be able 

to understand the logic easily. Given below are some guidelines that would help improve 

readability and facilitate maintenance. 

 Avoid compound negative statements. Use positive statements wherever possible.  

 Keep logical expressions simple. We can achieve this using nested if statements, if 

necessary (KISS – Keep It Simple and Short). 

 Try to code the normal/anticipated condition first. 
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 Use the most probable condition first. This will eliminate unnecessary tests, thus 

improving the efficiency of the program. 

 The choice between the nested if and switch statements is a matter of individual’s 

preference. A good rule of thumb is to use the switch when alter-native paths are three to 

ten. 

 Use proper indentations (See Rules for Indentation). 

 Have the habit of using default clause in switch statements. 

 Group the case labels that have similar actions. 

5.9 THE GOTO STATEMENT 

So far we have discussed ways of controlling the flow of execution based on certain 

specified conditions. Like many other languages, C supports the goto statement to branch 

unconditionally from one point to another in the program. Although it may not be essential to use 

the goto statement in a highly structured language like C, there may be occasions when the use 

of goto might be desirable. 

 The goto requires a label in order to identity the place where the branch is to be made. A 

label is any valid variable name, and must be followed by a colon. The label is placed 

immediately before the statement where the control is to be transferred. The general forms of 

goto and label statements are shown below: 

 

 

 

 

 

En Forward jump      Backward jump 

The label can be anywhere in the program either befoe of after the goto label: statement. 

During running of a program when a statement like 

  goto label 

……………. 
……………. 
……………. 
label  

statement: 

   label  

statement: 

 ................ 

................. 

............... 

goto label: 
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  goto begin; 

is met, the flow of control will jump to the statement immediately following the label begin. This 

happens unconditionally. 

Note that a goto breaks the normal sequential execution of the program. If the label is 

before the statement goto label; a loop will be formed and some statement will be executed 

repeatedly, such a jump is known as backward jump. On the other hand, if the label; is placed 

after he goto label; some statements will be skipped and the jump is known as forward jump. 

A goto is often used at the end of a program to direct he control to go to ehe input 

statement, to read further data. Consider the following example; 

   main ( ) 

    { 

    double x,y 

    read; 

    scanf(“%f”, &x); 

    if (x<0) goto read; 

    y = sprt(x) 

    print(“%f %f\n”, x, y); 

goto read; 

} 

This program is written to evaluate the square root of a series of numbers read form the 

terminal. The program uses two goto statements. One at the end, after printing the results to 

transfer the control back to the input statement and the other to  skip any other computation when 

then number is negative. 
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Due to the unconditional goto statement at the end the control is always transferred back 

to the input statement. in fact, this program puts the computer in a permanent loop known as an 

infinite loop. The computer goes round and round until we take some special steps to terminate 

the loop. Such infinite loops should be avoided program 5.9 illustrates how such infinite lops can 

be eliminated. 

Program 5.9 

Program presented in fig.5.15 illustrates the use of the goto statement. The program evaluates the 

square root for five numbers; the variable count keeps the count of numbers read. When count is 

less than or equal to 5, goto read; directs the control to the label read; otherwise, the program 

prints a message and stop. 

Program 

 #include<math.h> 

 main ( ) 

  { 

  double x, y; 

  int count; 

  count = 1; 

  printf(“Enter FIVE real values in a LINE \n”); 

  read: 

     scanf(“%1f”, &x); 

    printf(“\n”);  

  if( x<0) 

       printf(“Value - %d is negative\n”, count); 
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  else 

    { 

  y = sqrt(x); 

  printf(“%1f\t %1f\n”, x, y); 

  } 

  count = count +1; 

  if (count <= 5)  

  goto read; 

      printf(“\nEnd of computation”); 

  } 

Output 

  Enter FIVE real  values in a LINE   

  50.70 40 -36 75 11.25 

  50.750000 7,123903 

  40.00000  6.324555 

  Value -3 is negative 

  75.00000 8.6660254 

  11.25000 3.354102 

  Fig 5.15 Use of the  goto statement 

 Another use of th goto statement is to transfer the control out of a loop(or nested loops) 

when certain peculiar conditions are encountered. Example: 
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  --------------- 

  ---------------  

  while (-----------) 

  { 

   for(------------) 

   { 

   ------------- 

   ------------ 

   if(-----------)goto end_of_program: 

   ------------ 

   } 

  --------------- 

  ---------------- 

  } 

   end_of_process: 

 we should try to avoid using goto as far as possible. But there is nothing wrong, if we use 

it to enhance the readability of the program or to improve the execution speed. 

Just Remember 

 Be aware of dangling else statements. 

 Be aware of any side effect in the control expression such as if(x++) 

 Use braces to encapsulate the statements in if and else clauses of an if......else 

statement. 

 Check the use of = operator  in place of the equal operator = =. 
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 Do not give any spaces between the two symbols of relational operators = =. T=, 

>= and <=. 

 Writing!=, >= and <= operators like =!, >= and =< is an error. 

 Remember to use two ampersands (&&) and two bars(||) for logical operators. 

Use of single operators will result in logical errors. 

 Do not forget to  place parentheses for the if expression 

 It is an error to place a semicolon after the if expression 

 Do not use the equal operator to compare two floating-point values. They are 

seldom exactly equal. 

 Do not forget to use a break statement when the cases in a switch statement are 

exclusive. 

 Although it is optional, it is a good programming practice to use the default clause 

in a switch statement 

 It is an error to use a variable as the value in a case label of a switch statement. 

(only integral constants are allowed.) 

 Do not use the same constant in two case labels in a switch statement. 

 Avoid using operands that have side effects in a logical binary expression such as 

(x-&&++y). The second operand may not be evaluated at all. 

 Try to use simple logical expressions. 

Case studies 

1. Range of Numbers 

Problem:    A survey of the computer market shows that personal computers are sold at varying 

cost by the vendors. The following is the list of costs ( in hundreds) quoted by some vendors: 

 35.00,  40.50,   25.00  31.25  68.15, 

 47.00  26.65  29.00  53.45  62.50 

Determine the average cost and the range of values. 
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Problem analysis:  Range is one of the measures of dispersion used in statistical analysis o a 

series of values. The range of any series is the difference between the highest and the lowest 

values in the series. That is 

  Range = highest value – lowest value 

 It is therefore necessary to find the highest and the lowest values in the series. 

Program: 

A program to determine the range of values and the average cost of a personal computer in 

the market is given in fig. 5.16. 

Program 

   main ()  

   { 

    int count; 

    float value, high low, sum, average, range; 

    sum = 0; 

    count = 0; 

    print(“Enter numbers in a line : 

     input a NEGATIVE number to end\n”); 

input:   

   scanf(“%f”, &value); 

   if(value < 0) goto output; 

    count = count +1 

   if( count ==1) 
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    high = low  = value 

   else if (value > high) 

    high = value; 

         else if ( value < low) 

    low = value; 

   sum = sum + value; 

   goto input; 

Output: 

   average = sum/count; 

   range = high – low; 

   printf(“\n\n”); 

   printf(“Total values : %d\n”, count); 

   printf(“Highest-value: %f\nlowest-value : %f\n”,        

    high, low); 

   printf(“Range : %f\nAverage s  : %f\n”, 

    range, average); 

   } 

Output 

Enter numbers in a line : input a NEGATIVE number to end 

35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1 

Total values  : 10 



192 

 

Highest – values    :    68.150002 

Lowest – value    :   25.00000 

Range   :  43.150002 

Average :  41.849998 

Fig .5.16 Calculation of range of values 

 When the value is read the first time, it is assigned to two buckets, high and low, through 

the statement 

   high = low = value; 

 For subsequent values, the value read is compared with high; if it is larger, the value is 

assigned to high. Otherwise, the value is compared with low, if it is smaller, the value s assigned 

to low. Note that at a given point , the buckets high and low hold the highest and the lowest 

values read as far. 

The values are read in an nut loop created by the goto input statement. The control is transferred 

count of the loop by inputting a negative number, this is caused by the statement 

    if(value <=0) goto output; 

Note that this program can be written without using goto statements. Try. 

2. Pay-Bill Calculations 

Problem:  A manufacturing company has classified its executives in to four levels for the benefit 

of certain perks. The levels and corresponding perks are shown below: 

Level 

Perks 

Conveyance Entertainment allowance 

1 

2 

1000 

750 

500 

200 
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3 

4 

500 

250 

100 

--- 

An executive’s gross salary includes basic pay, house rent allowance at 25% of basic pay and 

other perks. Income tax is withheld from the salary on a percentage basis as follows: 

Gross salary Tax rate 

Gross <= 2000 

2000 < Gross <= 4000 

4000 < Gross <= 5000 

Gross > 5000 

No tax deduction 

3% 

5% 

8% 

Write a program that will read an executive’s job number, level number and basic pay and then 

compute the net salary after withholding income tax. 

Problem analysis: 

 Gross salary =  basic pay + house rent allowance + perks 

 Net salary = Gross salary – income tax. 

 The computation of perks depends on the level, while the income tax depends on the 

gross salary. The major steps are: 

  1.  Read data. 

  2.  Decide level number and calculate perks 

  3.  Calculate gross salary 

  4.  Calculate income tax. 

  5.   Compute net salary. 

  6 Print the results. 
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Program: 

 A Program and the results of the test data are given if Fig. 5.17. note that the last 

statement should be an executable statement. That is, the label stop: cannot be the last line. 

Program 

  #define CA1 1000 

  #define CA2 750 

  #define CA3 500 

  #define CA4  250 

  #define EA1 500 

  #define EA2 200 

  #define EA3 100 

  #define EA4 0 

  main ()\ 

  { 

   int level, jobnumber; 

   float gross; 

    basic, 

    house_rent, 

    perks, 

    net, 

    incometax; 

  input: 

   printf(“\nEnter level, job number, and basic pay\n”); 

   printf(“Enter 0(zero) for level to END\n\n”);  
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   scanf(“%d”, &level);  

   if  (level ==0) goto stop; 

   scanf(“%d %f”, &jobnumber, &basic); 

   switch (level) 

   { 

    case 1: 

    Perks = CA1 + EA1; 

    Break; 

   case  2; 

    perks = CA2 + EA2; 

    break; 

   case 3: 

    perks = CA3 + EA3; 

    break; 

   case 4: 

    perks = CA4 + EA4; 

    break; 

 

   default; 

    printf(“Error in level code\n”); 

    goto stop; 
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   } 

   house_rent = 0.25 * basic; 

   gross = basic + house_rent + perks; 

   if (gross <= 2000) 

     incometax = 0; 

   else  if  (gross <= 4000) 

    incometax = 0.03 * gross; 

              else if (gross <=5000) 

        incometax = 0.05 * gross; 

      else 

        incometax = 0.08 * gross; 

   net =  gross – incometax;  

   printf(“%d %dn %.2f\n” , level, jobnumber, net); 

   goto input; 

   stop:  printf(“\n\nEND OF THE PROGRAM”); 

   } 

Output 

   Enter level, job number, and basic pay 

   Enter 0(zero) for level to END 

   1 1111 4000 

   1 1111 5980.00 
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   Enter level, job number, and basic pay 

   Enter 0 (zero) for level to END 

   2 2222 3000 

   2 2222 4465.00 

   Enter level, job number, and basic pay  

   Enter 0 (zero) for level to END 

   3 3333 2000 

   3 3333 3007.00 

   Enter level, job number, and basic pay 

   Enter 0 (zero) for level to END 

   4 4444 1000 

   4 4444 1500.00 

   Enter level, job number, and basic pay 

   Enter 0 (zero) for level to END 

   0 

END OF THE PROGRAM 

Fig 5.17 Pay-bil calculations 
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6 DECISION MAKING AND LOOPING 

6.1 INTRODUCTION 

     We have seen in the previous chapter that it is possible to execute a segment of a 

program repeatedly by introducing a counter and later testing it using the if statement.   

While this method is quite satisfactory for all practical purposes, we need to initialize and 

increment a counter and test its value at an appropriate place in the program for the 

completion of the loop.  For example, suppose we want to calculate the sum of squares of 

all integers between 1 and 10, we can write a program using the if statement as follows: 

…………….. 

…………….. 

sum = 0; 

n = 1; 

loop: 

sum = sum + n*n; 

if (n == 10) 

goto print; 

else  

 { 

     n = n+1;                          n = 10, 

     goto loop;                        end of loop 

 } 

print: 

…….. 

…….. 
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This program does the following things: 

1. Initializes the variable n. 

2. Computes the square of n and adds it to sum. 

3. Tests the value of n to see whether it is equal to 10 or not.  If it is equal to 10, then 

the program prints the results. 

4. If n is less than 10, then it is incremented by one and the control goes back to 

compute the sum again. 

The program evaluates the statement 

sum = sum + n*n; 

10 times.  That is, the loop is executed 10 tikes.  This number can be increased or 

decreased easily by modifying the relational expression appropriately in the statement if 

(n==10).  On such occasions where the exact number of repetitions is known, there are 

more convenient methods of loping in C.  These looping capabilities enable us to develop 

concise programs containing repetitive processes without the use of goto statements. 

    In looping, a sequence of statements is executed until some conditions for 

termination of the loop are satisfied.  A program loop therefore consists of two segments, 

one known as the body of the loop and the other known as the control statement.  the 

control statement tests certain conditions and then directs the repeated execution of the 

statements contained in the body of the loop.     

Depending on the position of the control statement in the loop,  a control structure 

may be classified either as the entry-controlled loop or as the exit-controlled loop.  The 

flow charts in Fig.6.1 illustrate these structures.  In the case of an exit-controlled loop, the 

test is performed at the end of the body of the loop and therefore the body is executed 

unconditionally for the first time.  The entry-controlled and exit-controlled loops are also 

known as pre-test and post-test loops respectively. 
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     The test conditions should be carefully stated in order to perform the desired number of loop 

executions.  It is assumed that the test condition will eventually transfer the control out of the 

loop.  In case, due to some reason it does not do so, the control sets up an infinite loop and the 

body is executed over and over again. 

     A looping process, in general, would include the following four steps: 

1. Setting and initialization of a condition variable. 

2. Execution of the statements in the loop. 

3. Test for a specified value of the condition variable for execution of the loop. 

4. Incrementing or updating the condition variable. 

The test may be either to determine whether the loop has been repeated the specified number of 

times or to determine whether a particular condition has been met. 

The C language provides for three constructs for performing loop operations.  They are: 

1. The while statement. 

2. The do statement. 

3. The for statements 

We shall discuss features and application of each of these statements in this chapter. 

Sentinel Loops 

 Based on the nature of control variable and the kind of value assigned to it for testing the 

control 

Expression, the loops may be classified into two general categories: 

1. Counter-controlled loops 

2. Sentinel-controlled loops 

       When we know in advance exactly how many times the loop will be executed, we use a 

counter-controlled loop.  We use a control variable known as counter.  The counter must be 

initialized, tested and updated properly for the desired loop operations.  The number of times we 
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want to execute the loop may be a constant or a variable that is assigned a value.  A counter-

controlled loop is sometimes called definite repetition loop. 

      In a sentinel-controlled loop, a special value called a sentinel value is used to change the 

loop control expression from true to false.  For example, when reading data we may indicate the 

“end of data” by a special value, like -1 and 999.  The control variable is called a sentinel 

variable.  A sentinel controlled loop is often called indefinite repetition loop because the number 

of repetitions is not known before the loop begins executing. 

6.2 THE WHILE STATEMENT 

The simplest of all the looping structures in C is the while statement.  We have used 

while in many of our earlier programs.  The basic format of the while statement is  

while (test condition) 

{ 

body of the loop 

} 

     The while is an entry-controlled loop statement.  The test-condition is evaluated and if the 

condition is true, then the body of the loop is executed.  After execution of the body, the test-

condition is once again evaluated and if it is true, the body is executed once again.  This process 

of repeated execution of the body continues until the test-condition finally becomes false and the 

control is transferred out of the loop. 

On exit, the program continues with the statement immediately after the body of the loop. 

     The body of the loop may have one or more statements.  The braces are needed only if the 

body contains two or more statements.  However, it is a good practice to use braces even if the 

body has only one statement.  We can rewrite the program loop discussed in Section 6.1 as 

follows: 
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========== 

sum = 0; 

n = 1;    /*Initialization*/ 

while(n <= 10)/*testing*/  

{ 

sum = sum + n * n;     loop 

n = n+1; /*incrementing*/ 

} 

printf(“sum = %d\n”, sum); 

========== 

     The body of the loop is executed 10 times for n- 1,2,…10, each time adding the square of the 

value of n, which is incremented inside of the loop.  The test condition may also be written as 

n<11; the result would be the same.  This is a typical example of counter-controlled loops.  The 

variable n is called Counter or control variable. 

     Another example of while statement, which uses the keyboard input is shown below: 

========== 

character = ‘ ‘ ; 

while (character != ‘y’) 

character = getchar( ); 

xxxxxxxxxxx; 

=========== 
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     First the character is initialized to ‘ ‘.  The while statement then begins by testing whether 

character is not equal to Y.  Since the character was initialized to’ ‘, the test is true and the loop 

statement    

character = getchar( ); 

is executed.  Each time a letter is keyed in, the test is carried out and the loop statement is 

executed until the letter Y is pressed.  When Y is pressed, the condition becomes false because 

character equals Y, and the loop terminates, thus transferring the control to the statement xxxxx; 

this is a typical example of sentinel-controlled loops.  The character constant ‘y’ is called 

sentinel value and the variable character is the condition variable, which often referred to as the 

sentinel variable. 

Program 6.1 A program to evaluate the equation y=xn   when n is a non-negative integer, is 

given in Fig.6.2 

The variable y is initialized to 1 and then multiplied by x, n times using the while loop, The loop 

control variable count is initialized outside the loop and incremented inside the loop.  When the 

value of count becomes greater than n, the control exists the loop. 

Program  

       main ( ) 

{ 

int count, n; 

float x, y; 

printf(“Enter the values of x and n : “); 

scanf(“%f%d”, &x, &n); 

y = 1.0; 

count = 1;                    /*initialization*/ 
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/*loop begins*/ 

while (count <= n)         /*testing*/ 

{ 

y = y*x; 

count++;                  /* incrementing*/ 

} 

/*end of loop*/ 

printf(“\ns = %f; n = %d; x to power n = %f\n”,x,n,y); 

} 

Output 

Enter the values  of x and n: 2.5 4 

X = 2.500000; n =4; x to power n= 39.062500 

Enter the values of x and n: 0.5 4 

X = 0.500000; n = 4; x to power n = 0.62500 

                           Fig 6.2 Program to compute x to the power n using while loop 

6.3 THE DO STATEMENT 

The while loop construct that we have discussed in the previous section, makes a test of 

condition before the loop is executed.  Therefore, the body of the loop may not be executed at all 

if the condition is not satisfied at the very first attempt.  On some occasions it might be necessary 

to execute the body of the loop before the test is performed.  Such situations can be handled with 

the help of the do statement.  This takes the form: 

do  

{ 
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body of the loop 

} 

while (test-condition); 

      On reaching the do statement, the program proceeds to evaluate the body of the loop 

first.  At the end of the loop, the test-condition in the while statement is evaluated.  If the 

condition is true, the program continues to evaluate the body of the loop once again.  This 

process continues as long as the condition is true.  When the condition becomes false, the loop 

will be terminated and the control goes to the statement that appears immediately after the while 

statement.   

      Since the test-condition is evaluated at the bottom of the loop, the do…while construct 

provides an exit-controlled loop and therefore the body of the loop is always executed at least 

once. 

     A simple example of a do…while loop is: 

do 

 { 

printf(“input a number\n”); 

number = getnum ( ); 

} 

while (number > 0); 

………………….. 

       This segment of a program reads a number from the keyboard until a zero or a negative 

number is keyed in, and assigned to the sentinel variable number. 

      The test conditions may have compound relations as well.  For instance, the statement 

while (number > 0 && number < 100); 



207 

 

in the above example would cause the loop to be executed as long as the number keyed in lies 

between 0 and 100. 

     Consider another example: 

========= 

i = 1;                                                              /*Initializing*/ 

sum = 0; 

Do 

{ 

sum = sum + i; 

I = I+2;                                           /*Incrementing*/ 

} 

while (sum 40 || i < 10);           /* Testing*/ 

printf(“%d  %d\n”, i, sum); 

========== 

The loop will be executed as long as one of the two relations is true. 

Program 6.2 A program to print the multiplicationfrom 1*1 to 12*10 as shown below is given  

Fig.6.3 

1 2 3 4 ………..10 

2  4 6 8 ………..20  

3 69 12 ………..30 

4 

- 
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- 

12           ………..120 

This program contains two do…..while loops in nested form.  The outer loop is controlled by the 

variable row and executed 12 times.  The inner loop is controlled by the variable column and is 

executed 10 times, each time the outer loop is executed. That is, the inner loop is executed a total 

of 120 times, each time printing a value in the table. 

     Program: 

#define COLMAX 10 

#define ROWMAX 12 

main( ) 

int row, coulumn, y; 

row = 1; 

printf(“ multiiiplication table \n”); 

printf(“------------------------------ \n”); 

do /*………………..OUTER LOOP BEGINS…………..*/ 

{ 

column = 1; 

do /*………….INNERLOOP BEGINS……….*/ 

{  

y = row * column; 

printf(“%4d”, y); 

Column = column + 1; 
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} 

while (column <= COLMAX); 

/*….INNER LOOP ENDS….*/ 

printf(“\n”); 

row = row + 1; 

} 

while ( row <= ROWMAX); 

/*……..OUTERLOOP ENDS…..*/ 

printf(“-----------------------------------------------------\n”);} 

Output 

MULTIPLICATION TABLE 

------------------------------------------------------------------------------------------------------------------ 

1      2     3     4      5   6     7     8     9     10 

2      4     6     8    10 12    14   16   18     20 

3      6     9     12   15 18    21  24   27     30 

4      8    12    16   20 24    28  32   36     40 

5    10    15    20   25 30    35  40   45     50 

6    12    18    24   30 36    42  48   54     60 

7    14    21    28   35 42    49  56    63    70 

8    16    24    32   40 48    56  64    72    80 

9    18    27    36   45 54    63  72    81    90 
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10  20    30    40   50 60    70  80    90   100  

11  22    33    44   55 66    77  88    99   110 

12  24    36    48   60 72    84  96  108   120 

--------------------------------------------------------------------------------------------------------------------  

Fig 6.3 Printing of a multiplication table using do…..while loop 

 Notice that the printf of the inner loop does not contain any new line character (\n).  this 

allows the printing of all row values in one line.  The empty printf in the outer loop initiates a 

new line to print the next row. 

6.4 THE FOR STATEMENT 

Simple ‘for’ loops 

The for loop is another entry-controlled loop that provides a more concise loop control 

structure.  The general form of the for loop is  

for ( initialization ; test-condition ; increment  ) 

{ 

Body of the loop  

} 

The execution of the for statements as follows: 

1. Initialization of the control variable is done first, using assignment statements such as i 

=1 and count = 0.  The variables i and count are known as loop-control variables. 

2. The value of the control variable is tested using the test-condition.  The test-condition is a 

relational expression, such as i< 10 that determines when the loop will exit.  If the 

condition is true, the body of the loop is executed; otherwise the loop is terminated and 

the execution continues with the statement that immediately follows the loop. 

3. When the body of the loop is executed, the controls transferred back to the for statement 

after evaluating he last statement in the loop.  Now, the control variable is incremented 
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using an assignment statement such as I =i+1 and the new value of the controls variable 

is again tested to see whether it satisfies the loop condition.  If the condition is satisfied, 

body of the loop is again executed.  This process continues till the value of the control 

variable fails to satisfy the test-condition. 

 Note: C99 enhances the for loop by allowing declaration of variables in the initialization 

permits portion.  See the appendix “C99 Features”. 

Consider the following segment of a program 

              for ( x = 0 ; x <= 9 ; x = x+1) 

{ 

printf(“%d”, x); 

} 

printf(“\n”); 

this for loop is executed 10 times and prints the digit 0 to 9 in one line.  The three section 

enclosed within parentheses must be separated by semicolons.  Note that there is no semicolon at 

the end of the increment section, x =x+1. 

The for statement allows for negative increments.  For example, the loop discussed above can be 

written follows: 

for ( x = 9 ; x  > 0 ; x = x-1 ) 

printf(“%d”, x); 

printf(“\n”); 

      This loop is executed 10 times, but the output would be from 9 to 0 instead of 0 to 9.  

Note that braces are optional when the body of the loop contains only one statement. 

      Since the conditional test is always performed at the beginning of the loop, the body of 

the loop may not be executed at all, if the condition fails at the start.  For example, 
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for (x = 9; x < 9; x = x-1) 

printf(“%d”, x); 

Will never be executed because the test condition fails at the very beginning itself. 

     Let us again consider the problem of sum of squares of integers discussed in section6.1. 

this problem can b coded using the for statements follows: 

--------------------------------- 

sum = 0; 

for (n = 1; n <= 10; n = n+1) 

{ 

sum = sum+ n*n; 

} 

printf(“sum = %d\n”, sum); 

----------------------------------- 

The body of the loop 

sum = sum + n*n; 

Is executed 10 times for n=1,2….10 each time incrementing sum by the square of the value of n.   

      One of the important points about the for loop is that all the three actions, namely 

initialization, testing, and incrementing.  Are placed in the for statement itself, thus making them 

visible to the programmers and user, in one place.  The for statement and its equivalent of while 

and do statements are shown in table 6.1. 
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Table 6.1 Comparison of the Three Loops 

for while  do 

for (n=1;n<=10; ++n) 

{ 

--------------- 

--------------- 

} 

n = 1; 

while(n<=10) 

{ 

---------------- 

---------------- 

n = n+1; 

} 

n = 1; 

do 

{ 

------------------- 

------------------- 

n =n +1; 

} 

while(n<=10); 

 

Program 6.3 The program in Fig 6.4 uses a for loop to print the “power of 2” table for the power 

0 to 20, both positive and negative. 

Program 

main ( ) 

{ 

long int p; 

double q; 

int n; 

printf(“------------------------------------------------------------------------\n”); 

printf(“2 to power n    n  2 to power –n\n”); 
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printf(“(“------------------------------------------------------------------------\n”); 

p =1; 

for (n= 0; n < 21; ++n)  /* LOOP BEGINS */ 

{ 

if (n = = 0) 

P = 1; 

else 

 p =  p * 2; 

q = 1.0/(double)p; 

printf(“%101d %10d %20.121f\n”, p,n,q); 

} 

 /*  loop ends*? 

            printf(“------------------------------------------------------------------------\n”); 

} 

Output 

-------------------------------------------------------------------------- 

           2 to power n                  n                    2 to power –n 

-------------------------------------------------------------------------- 

1      0  1.000000000000 

2    1    0.500000000000 

4   2   0.200000000000 
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8      3    0.250000000000 

16      4   0.062500000000 

32    5   0.031250000000 

64   6   0.015625000000 

128   7   0.007812500000 

256   8   0.003906350000 

512   9   0.001953125000 

1024   10   0.000976562500 

2048   11   0.000488281250 

4096   12   0.000244140625 

8192   13   0.000122070313 

16394   14   0.000061035156 

32768   15   0.000030517578 

65536   16   0.000015258789 

131072   17   0.000007629395 

262144   18   0.000003814697 

524288   19   0.000001907349 

1048576   20   0.000000953674 

-------------------------------------------------------------------------- 

Fig 6.4 program to print ‘print power of 2’ table using for loop 
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The program evaluates the value  

p = 2n 

Successively by multiplying 2 by itself n times. 

q = 2-n = 1/p 

Note that we have declared pa as long int and q as a double 

Program 6.4 the program in fig 6.5 shows how to write a c program to print all the prime 

number between 1 and n, where ‘n’, where ‘n’ is the value supplied by the user. 

Program 

#include<stdio.h> 

#include<conio.h> 

void main( ) 

{ 

int prime (int num); 

int n.i; 

int temp; 

printf(“enter the value of n: “); 

scanf(“%d”, &n); 

printf(“Prime Number Between 1 And %D Are : \n”.n); 

for(i=2; j<=n; i++) 

{ 

temp=prime(i); 
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if(temp==-99) 

continue; 

else 

            printf(“%d\t”, i); 

} 

getch( ); 

} 

int prime (int num) 

{ 

int j; 

for (j=2; j<num; j++) 

{ 

if  (num%j==0) 

return (-99); 

else 

; 

} 

if  (j==num) 

return(num); 

} 
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Output  

enter the Value Of N: 20 

Prime Number Between 1 And 20 Are: 

2 3 5 7 11 13 17 19 

Fig.6.5 Program To Print All Prime Number Between 1 And n 

Program 6.5 the program in Fig 6.6 shows how to write a c  program to print the Fibonacci 

number 

Program 

#include <stdio.h> 

#include <conio.h> 

void main ( ) 

{ 

int num 1=0, num2=1, n, i, fib; 

clrscr( ); 

printf(“\n\nenter the value of n: “); 

scanf(“%d”, &n); 

for (i = 1; i <= n-2; i++) 

{ 

fib=num1 + num2; 

num=num2; 

num2=fib; 
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} 

printf(“\nn fibonacci number (for n = %d) = %d, n,fib); 

getch( ); 

} 

                      Fig 6.6 program to print nth Fibonacci number 

Additional features of for loop 

 The for loop in C has several capabilities that are not found in other loop constructs.  For 

example, more than one variable can be initialized at a time in the for statement. The statements 

p = 1; 

for (n =0; n<17; ++n) 

can be written as  

for (p=1, n=0; n<17; ++n) 

      Note that the initialization section has two parts p=1 and n=1 separated by a comma. 

Like the initialization section, the increment section may also have more than one part.  For 

example, the loop 

for (n =1, m=50; n<=m; n=n+1, m=m-1) 

{ 

p = m/n; 

printf(“%d %d %d\n”, n, m, p); 

}  

is perfectly valid.  The multiple arguments in the increment section are separated by commas. 

     The third features is that the test-condition may have any compound relation and testing need 

not be limited only to loop control variable.  Consider the example below: 
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sum = 0;  

for(i =1; i < 20 && sum < 100; ++i) 

{ 

sum = sum+i; 

printf(“%d %d\n”, i, sum); 

} 

      The loop uses a compound test condition with the counter variable I and sentinel variable 

sum. The loop is executed as long as both the conditions i<20 and sum<100 are true.  The sum is 

evaluated inside the loop. 

     It is also permissible to use expressions in the assignment statements of initialization and 

increment sections.  For example, a statement of the type  

for ( x = (m+n)/2; x > 0; x = x/2) 

is perfectly valid. 

      Another unique aspect of for loop is that one or more sections can be omitted, if 

necessary.  Consider the following statements: 

------------------- 

m = 5; 

for( ; m != 100 ;) 

{ 

printf(“%d\n”, m); 

m= m+5; 

} 

-------------------- 
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      Both the initialization and increment sections are omitted in the for statements.  The 

initialization has been done before the for statement and the control variable is incremented 

inside the loop.  In such cases, the sections are left ‘blank’.  However, the semicolons separating 

he sections must remain.  If the test-condition is not present, the for statement sets up an 

‘infinite’ loop.  Such loops can be broken using break or goto statements in the loop. 

     We can set up time delay loops using the null statements follow: 

for ( j= 1000;  j > 0; j = j-1) 

; 

      This loop is executed 1000times without producing any output; it simply causes a time 

delay.  Notice that body of the loop contains only semicolon, known as null statement.  This can 

also be written as  

for(j=1000; j>0; j=j-1) 

      This implies that the C compiler will not give an error message if we place a semicolon by 

mistake at end of a for statement.  The semicolon will be considered as a null statement and the 

program may produce some nonsense. 

Nesting of for loops 

 Nesting of loops, that is, one for statement with another for statement is allowed in C.  for 

example, two loops can be nested as follows: 

---------------------- 

--------------------- 

for ( i =1; i < 10; ++j) 

{        OUTER LOOP 

--------------------------- 

-------------------------- 
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for ( j =1; j !=  5; ++j) INNER LOOP 

{ 

-------------------------- 

--------------------------- 

} 

------------------ 

------------------- 

} 

----------- 

----------- 

      The nesting may continue up to any desired level.  The loops should be properly 

indented so as to enable the reader to easily determine which statements are contained within 

each for statement. (ANSI C allows up to15 levels of nesting.  However ,some compiler permit 

more). 

      The program to print the multiplication table discussed in program 6.2 can be written 

more concisely using nested for statements as follows: 

------------------------- 

for ( row = 1; row <= ROWMAX; ++row) 

{ 

for (column = 1; column <= COLMAX; ++column) 

{ 

y = row * column; 
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printf(“%4d”, y); 

} 

printf(“\n”); 

} 

---------------------- 

Program 6.6 A Class of n students take an annual examination in m subjects.  A program to read 

the marks obtained by each student in various subjects and to compute and print the total marks 

obtained by each of them is given in Fig.6.7. 

 The program uses two for loops, one for controlling the number of students and the other 

for controlling the number of subjects.  Since both the number of students and the number of 

subjects are requested by the program, the program may be used for a class of any number of 

subjects. 

 The outer loop includes three parts: 

1. Reading of rool-numbers of students, one after another, 

2. Inner loop, where the marks are read and totalled for each student; and 

3. Printing of total marks and declaration of grades. 

Program 

#define FIRST 360 

#define SECOND 240 

main( ) 

{ 

int n, m, i, j, roll_number, marks, total; 

printf(“Enter number of students and subjects\n”); 
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scanf(“%d %d”, &n, &n); 

printf(“\n”); 

for (I =1; I <= n ; ++i) 

{ 

print(“enter roll_sumber : “); 

scanf(“%d”, &roll_number): 

total = 0 ; 

printf(“\nEnter marks of %d subjects for ROLL NO %d\n”, m, 

roll_number); 

for ( j = 1; j <= m; j++) 

{ 

scanf(“%d, &marks); 

total = total + marks; 

} 

printf(“TOTAL MARKS = %d”, total); 

if (total >= FIRST ) 

printf(“(First division )\n\n”); 

else if (total >= SECOND ) 

printf(“(SECOND division )\n\n”); 

else 

printf(“(*** FAIL***)\n\n); 



225 

 

                         } 

                         } 

Output 

Enter number of students and subjects 

3  6 

Enter roll_number : 8701 

Enter marks of 6 subjects for ROLL NO 8701 

81 75 83 45 61 59 

TOTAL MARKS =404 (First division) 

Enter roll number: 8702 

Enter marks of 6 subjects for ROLL NO 8702 

57 49 55 47 65 41  

TOTAL MARKS =308 (second division) 

Enter roll number: 8703 

Enter marks of 6 subjects for ROLL NO 8703 

40 19 31 47 39 25 

TOTAL MARKS =(***FAIL****) 

 Fig.6.7 illustration of nested for loops 
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Program 6.7 the program in Fig6.8 show how to write a program to display a pyramid 

Algorithm 

Steps 

1  - Start 

2  - Read a value for generating the pyramid (num) 

3  - Set x = 40 

4  - Initialize the looping counter y=0 

5  - Repeat steps 6-12 while y <= num 

6  - Move to the coordinate position (x, y+1) 

7  - Initialize the loping counter i=0-y 

8  - Repeat steps 9-10 while i<=y 

9  - Display the absolute value of I, ab(i) 

10  - -I = I +1 

11  - -x = x -3 

12  - -y = y + 1 

13  - -stop 
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Flow chart 

                                         

  

 

 

 

 

 

 

 

 

 

   Is i<=y? 

 

stop 

      Display absolute(i) 

  

 

 

 

start 

Goto (x,y+1) 

I=0-y 

I = i+1 

Read num 

        X = 40   

        Y = 0 

Is y<= num? 

X=x-3 
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Program 

#include <stdio.h> 

#include <conio.h> 

             void main ( ) 

{ 

int num,i,y,x=40; 

clrscr( ); 

printf(“\nEnter a number for \n generating the pyramid:\n”); 

scanf(“%d”, &num); 

for(y=0;y<=num;y++) 

{ 

gotoxy(x,y+1); 

for(i=0-y;i<=y;i++) 

printf(“%3d”,abs(i)); 

x=x-3; 

} 

getch(); 

} 

Output 

Enter a number for generating the pyramid: 

0 
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1 0 1 

2 1 0 1 2 

3 2 1 0 1 2 3 

4 3 2 1 0 1 2 3 4 

5 4 3 2 1 0 1 2 3 4 5 

6 5 4 3 2 1 0 1 2 3 4 5 6 

7 6 5 4 3 2 1 0 2 3 4 5 6 7 

Fig 6.8 Program to build a pyramid 

Selecting a loop 

Given a problem, the programmer’s first concern is to decide the type of loop structure to 

be used.  To choose one of the three loop supported by C, we may use the following strategy: 

 Analyze the problem and see whether it required a pre-test or post-test loop. 

 If it requires a post-test loop, then we can use only one loop, do while 

 If it requires a pre-test loop, then we can have two choices; for and while 

 Decide whether the loop termination requires counter-based control or sentinel- based 

control; 

 Use for loop if the counter-based control is necessary. 

 Use while loop if the sentinel-based controls required 

 Note that both the counter-controlled and sentinel-controlled loops can be implemented 

by all the three control structures. 

6.5 JUMPS IN LOOPS 

    Loops perform a set of operations repeatedly until the control variable fails to satisfy the 

test-condition.  The number of times a loop is repeated is decided in advance and the test 

condition is written to achieve this.  Sometimes, when executing a loop it becomes desirable to 

skip a part of the loop or to leave the loop as soon as a certain conditions occur.  For example, 

consider the case of searching for a particular name in a list containing, say, 100 names.  A 
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program loop written for reading and testing the names 100 times must be terminated as soon as 

the desired name is found.  C permits a jump from one statement to another within a loop as well 

as jump out of a loop. 

Jumping out of a loop 

      An early exit from a loop can be accomplished by using the break statement or the goto 

statement.  We have already seen the use of the break in the switch statement and the goto in the 

if…..else construct.  These statements can also be used within while, do or for loops.  They are 

illustrated in Fig.6.9 and Fig.6.10. 

     When a break statement is encountered inside a loop, the loop is immediately exited and the 

program continues with the statement immediately following the loop.  When the loops are 

nested, the break would only exit from the loop containing it.  That is, the break will exit only a 

single loop. 

     Since a goto statement can transfer the control to any place in a program.  It is useful to 

provide branching within a loop.  Another important use of goto is to exit from deeply nested 

loop when an error occurs.  A   simple break statement would not work here. 

while(……………..)         do 

{            { 

………………..           

 ……………………. 

………………..            

 ………………… 

if(condition)     
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                                             if(condition) 

break;    exit from   break; 

………….       the loop    ………………….. 

………….            ………………….. 

}          }while(……………….); 

………………         …………………. 

(a)        (b) 

for (…………..)        for(…………..) 

{        { 

…………….        ……………… 

……………          for(……………) 

if(error)           {…………… 

break;               if(condition) 

…………              break; 

                           exit from the loop                …………….. 

}         } 

……………….} 

   Fig.6.9 exiting a loop with break statement 

while (………….)       for(…………..) 

{               { ……………… 

if(error)        for(…………..) 
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goto stop;                 { 

………..         exit from              ………………… 

if(condition)   the loop        if(error) 

goto abc;             goto error; 

…………..                 exit from               ………….. 

abc;              two loops  } 

………..          ………………. 

………..          ………………….} 

 

}      stop;                    error;  

(a)        (b) 

Fig.6.10 Jumping within and exiting from the loops with goto statement 

Program 6.8 The program in Fig.6.11 illustrates the use of the break statement in a C program. 

The program reads a list of positive values and calculates their average.  The for loop is written 

to read 1000 values.  However, if we want the program to calculate the average of any set of 

values less than 1000, then we must enter a ‘negative’ number after the last value in the list, to 

mark the end of input. 

 Program 

main ( ) 

{ 

int m; 

float x, sum, average; 
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printf(“this program computes the average of a set of number \n”); 

printf(“enter values one after another \n”); 

printf(“enter a negative number at the end.\n\n”); 

sum = 0; 

for (m = 1 ; m <= 1000 ; ++m) 

{ 

scanf(“%f”, &x); 

if ( x < 0 ) 

break; 

sum += x ; 

} 

average = sum/(float)(m-1); 

printf(“\n”); 

printf(“number of values = %d\n”, m-1); 

printf(“sum            = %f\n, sum); 

printf(“average               =  %f\n”, average); 

} 

Output 

this program computes the averge of a set of numbers 

enter values one after another  

enter a negative number at the end. 
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21 23 24 22 -1 

number of values =6 

sum          =138.000000 

average                   =23.000000 

Fig.6.11 use of break in a program 

     Each value, when it is read, it tested to see whether it is a positive number or not.  If it is 

positive, the value is added to the sum; otherwise, the loop terminates.  On exit, the average of 

the values read is calculated and results are printed out. 

Program 6.9 A program to evaluate the series. 

1/1-x=1+x+x2+x3+x4+…….+xn    for -1<x<1 with 0.01 percent accuracy is given in Fig6.12.  The 

goto statement is used to exit the loop on achieving the desired accuracy. 

     We have used the for statement to perform the repeated addition of each of the terms in the 

series.  Since it is an infinite series, the evaluation of the function is terminated when the term xn 

reaches the desired accuracy.   The value of n that decides the number of loop operations is not 

known and therefore we have decided arbitrarily a value of 100, which may or may not result in 

the desired level of accuracy. 

Program 

#define LOOP 100 

#define ACCURACY 0.0001 

main ( ) 

{ 

int n; 

float x, term, sum; 
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printf(“input value of x: “); 

scanf(“%f”, &x); 

sum = 0; 

for (term = 1, n = 1 ; n <= loop ; ++n) 

{ 

sum += term; 

if (term <= ACCURACY) 

goto output; 

/*EXIT FROM THE LOOP*/ 

term *= x ; 

} 

printf(“\n FINAL VALUE OF N IS NOT SUFFICIENT \N”); 

printf(“TO ACHIEVER DEIRED ACCURACY\N”); 

goto end; 

Out put 

printf(“\n EXIT FROM LOOP \n”); 

printf(“sum = %f;  no.of term = %d\n”, sum, n); 

end: 

;/*Null statement*/ 

} 
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Output  

Input value of x: .21 

EXIT FROM LOOP 

Sum = 1.265800; No.of term = 7 

Input value of x : .75 

EXIT FROM THE LOOP 

Sum = 3.999774; No.of terms= 34 

Input value of x : .99 

FINAL VALUE OF N IS NOT SUFFIECIENT 

TO ACHIEVE DESIRED ACCURACY 

Fig.6.12 Use of goto to exit from a loop 

    The test of accuracy is made using an if statement and the goto statement exists the loop 

as soon as the accuracy condition is satisfied.  If the number of loop repetitions is not large 

enough to produce the desired accuracy.  The program prints an appropriate message. 

 Note that the break statement is not very convenient to use here.  Bothe the normal exit 

and the break exit will transfer the control to the same statement that appears next to the loop.  

But, in the present problem, normal exit prints the message 

“FINAL VALUE OF N IS NOT SUFFICIENT 

TO ACHIEVE DESIRED ACCURACY” 

and the forced exit prints the results of evaluation.  Notice the use of a null statement at the end.  

This is necessary because a program should not end with a label. 
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Structured Programming 

Structured programming is an approach to the design and development of programs.  It is a 

discipline of making a program’s logic easy to understand by using only the basic three control 

structures: 

 Sequence (straight line) structure 

 Selection(branching) structure 

 Repetition (looping) structure 

While sequence and loop structures are sufficient to meet all the requirements of 

programming, the selection to be structure proves more convenient in some situations. 

The use of structured programming techniques helps ensure well-designed programs that are 

easier to write, read, deg and maintain compared to those that are unstructured. 

Structured programming discourages the implementation of unconditional branching using 

jump statements such as goto, break and continue.  In its purest form, structured programming is 

synonymous with “goto less programming”. 

Do not go to goto statement!  

Skipping a part of a loop 

      During the loop operations, It may be necessary to skip part of the body the loop under 

certain conditions.  For example, in processing of applications for some job, we might like to 

exclude the processing of data of applications belonging to a certain category.  On reading the 

category code of an applicant, a test is made to be whether his application should be considered 

or not.  If it is not to be considered, the part of the program loop that processes the application 

details is skipped and the execution continues with the next loop operations. 

Like the break statement, C supports another similar statement called the continue statement. 

However, unlike the break which causes the loop to be terminated, the continue, as the name 

implies, causes the loop to be continued with the next iteration after skipping any statements in 

between.  The continue statement tells the compiler, “SKIP THE FOLLOWING STATEMENTS 
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AND CONTINUE WITH THE NEXT ITERATION”.  The format of the continue statement is 

simply        continue; 

      The use of the continue statement in loops is illustrated in Fig.6.13.  in while and do 

loops, continue causes the control to go directly to the test-condition and then to continue the 

iteration process.  In the case of for loop, the increment section of the loop is execute td before 

the test-condition is evaluated. 

while(……………..)         do 

{            { 

………………..           

 ……………………. 

………………..            

 ………………… 

If(condition)         If(condition) 

continue;       conditinue; 

………….           ………………….. 

………….            ………………….. 

}           } 

                                                                                                         while(……………….); 

………………         …………………. 

(a)        (b) 
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\for (…………..)         

{         

…………….         

……………          

If(………………….)            

continue;           

…………              

Fig 6.13 Bypassing and continuing i loops 

Program 6.10 The program in Fig.6.14 illustrates the use of continue statement 

The program evaluates the square root of a series of numbers and prints the results.  The process 

stops when the number 9999 is typed in. 

      In case, the series contains any negative numbers, the process of evaluation of square root 

should be bypassed for such numbers because the square root of a negative number is not 

defined.  The continue statement is used to achieve this.  The program also prints a message 

saying that the number is negative and keeps an account of negative numbers. 

      The final output includes the number of positive values evaluated and the number of 

negative items encountered. 

Program 

#include <math.h> 

main ( ) 

{ 

int count, negative; 

double number, sqroot; 
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printf(“Enter 9999 to STOP\n”); 

Count = 0; 

negative = 0; 

while (count <= 100) 

{ 

printf(“enter a number :”); 

scanf(“%1f”, &number); 

if (number == 9999) 

break; /* exit from the loop*/ 

if(number < 0) 

{ 

printf(“Number is negatve\n\n”); 

negative++; 

continue;  /*SIP REST OF THE LOOP*/ 

} 

Sqroot = sqrt(number); 

printf(“number = %1f\n\n”, number, sqroot); 

count++; 

} 

printf(“number of the items done = %d\n”, count); 

printf(“\n\n negative items = %d\n, negative); 
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printf(“END OF DATA\n”); 

} 

Output 

ENTER 9999 to STOP  

Enter a number: 25.0 

Number = 25.000000 

Squareroot = 5.000000 

Enter a number: 40.5 

Number =40.500000 

Square root =6.363961 

Enter a number: -9 

Number is negative 

Enter a number:16 

Number =16.000000 

Square root =4.000000 

Enter a number:-14.75 

Number is negative 

Enter a number: 80  

Number =80.000000 

Square root =8.944272 

Enter a number: 9999  
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Number of items done = 4 

Negative items =2 

END OF DATA 

Fig.6.14 use of continue statement 

Avoiding got 

As mentioned earlier, it is a good practice to avoid using goto.  There are many reasons 

for this.  When goto is used, may compilers generate a less efficient code.  In addition, using 

many of them makes a program logic complicated and renders the program unreadable.  It is 

possible to avoid using goto by careful program design.  In case any goto is absolutely 

necessary, it should be documented.  The goto jumps shown in Fig 6.15 would cause problems 

and therefore must be avoided. 

 

 

 

Fig. 6.15 goto jumps to be avoided 

JUMPING OUT OF THE PROGRAM 

We have just seen that we can jump out of a loop using either the break statement or 

goto statement.  in a similar way, we can jump out of a program by using the library function 

exit ( ).  In case, due to some reason, we wish to break out of a program and return to the 

operating system, we can use the exit( ) function, as shown below. 

……………….. 

………………… 

if(test-condition)  

exit (0); 
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…………….. 

……………… 

      The exit ( ) function takes an integer value as its argument.  Normally zero is used to 

indicate termination and a nonzero value to indicate termination due to some error or abnormal 

condition.  The use of exit( ) function requires the inclusion of the header file <stdio.h>. 

6.6 CONCISE TEST EXPRESSIONS 

      We often use test expressions in the if, for while and do statements that are evaluated and 

compared with zero for making branching decisions.  Since every integer expression has a 

true/false value, we need not make explicit comparisons with zero.  For instance, the expression 

x is true whenever x is not zero, and false when x is zero.  Applying! Operator, we can write 

concise test expressions without using any relational operators. 

if(expressions ==0) 

is equivalent to  

if(expressions) 

similarly, 

if(expression! =0) 

is equivalent to 

if (expression) 

for example, 

If(m%5==0 && n%5==0) is same as if(!(m%5)&&!(n%5)) 
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Case studies 

1. Histogram 

Problem: In an organization, the employees are grouped according to their basic  pay for the 

purpose of certain perks.  The pay-range and the number of employees in each group are as 

follows: 

Group pay6-arange   Number of employees 

1. 750-1500           12 

2. 2501-3000           23 

3. 3001-4500           35  

4. 4501-6000           20 

5. above 6000           11 

Draw a histogram to highlight the group sizes. 

Problem analysis: 

 Given the size of groups, it is required to draw bars representing the sizes of various 

groups.  For each bar, its group number and size are to be written. 

     Program in Fig. 6.17 reads the number of employees belonging to each group and draws a 

histogram.  The program uses four for loops and two if…..else statements. 

Program: 

#define N 5 

main() 

{ 

int value[n]; 

int i, j, n, x; 

for(n=0; n < n; ++n) 
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{ 

printf(“enter employees in group - %d :”, n+1); 

scanf(“%d”, &x); 

value[n] = x; 

printf(“%d\n”, value[n]); 

} 

printf(“\n”); 

printf(“|\n”); 

for (n = 0; n < n; ++n) 

{ 

for(i=0; i <= 3 ; i++) 

{ 

if ( i ==2 ) 

printf(“group-%1d |”, n+1); 

else  

printf(“|”); 

for (j=1; j <= value[n]; ++j) 

printf(“*”); 

if (i == 2) 

printf(“(%d)\n”, value[n]); 

else  
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printf(“\n”); 

} 

printf(“|\n”); 

} 

} 

Output 

Enter employees in group – 1: 12 

12  

Enter employees in group – 2: 23 

23 

Enter employees in group –3: 35 

35 

Enter employees in group –4: 20 

20 

Enter employes in group –5: 11 

11 

| 

Group – 1  |************ 

|************(12) 

|************ 

| 
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Group – 2  | 

|*********************** 

|***********************(23) 

|*********************** 

| 

Group – 3  | 

|*********************************** 

|***********************************(35) 

|*********************************** 

| 

Group – 4  | 

|******************** 

|********************(20) 

|******************** 

| 

 

Group-5   | 

|*********** 

|*********** 

|*********** 
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2. Minimum cost 

Problem: The cost of operation of a unit consists of a unit two components C1 and C2 which can 

be expressed as functions of a parameter p as follows: 

C1 = 30-8p 

C2 = 10+p2 

     The parameter p ranges from 0 to 10.  Determine the value of p with an accuracy of +0.1 

where the cost of operation would be minimum. 

Problem Analysis: 

Total cost = C1+C2= 40-8p+p2 

     The cost is 40 when p = 0, and 33 when p = 1 and 60 when p = 10.  The cost, therefore, 

decreases first and then increases.  The program in Fig.6.18 evaluates the cost at successive 

intervals of p (in steps of 0.1) and stops when the cost begins to increase.  The program employs 

break and continue statements to exit the loop. 

Program 

main() 

{ 

float p, cost, p1, cost1; 

for (p=1; p <= 10; p = p + 0.1) 

{ 

cost = 40 – 8 * p + * p; 

if(p == 0) 

{ 

cost1 = cost; 



249 

 

continue; 

} 

 

if(cost >= cost1) 

break; 

cost1 = cost; 

p1 = p; 

         } 

p = (p +p1)/2.0; 

cost = 40 – 8 * p + p*p; 

printf(“\n MINIMUM COST = %.2f AT p = %.1f\n”, cost, p); 

} 

Output 

MINIMUM COST = 24.00 A   p = 4.0 

Fig. 6.18 Program of minimum cost problem 
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7 ARRAYS 

7.1 INTRODUCTION 

So far we have use only the fundamental data types, namely char, int, float ,double and 

variations of int and double.  Although these types are very useful, they are constrained by the 

fact that a variable of these type scan store only one value at any given time.  Therefore, they can 

be used only to handle limited amounts of data.  In many applications, however, we need to 

handle a large volume of data in terms of reading, processing and printing. To process such large 

amounts of data, we need a powerful data type that would facilitate efficient storing, accessing 

and manipulation of data items.  C supports a derived data type known as array that can be used 

for such applications. 

     An array is a fixed-size sequence collection   of elements of the same data type.  It is 

simply a grouping of like-type data.  In its simplest form, an array can be used to represent a list 

of numbers, or a list of names.  Some examples where the concept o fan array can be used: 

1. List of temperatures recorded every hour in a day, or a month, or a year. 

2. List of employees in an organization.   

3. List of products and heir cost sold by a store. 

4. Test scores of a class of students. 

5. List of customers and their telephone numbers. 

6. Table of daily rainfall data. 

andso on. 

      Since an array provides a convenient structure for representing data, it is classified as one 

of the data structures in C.  Other data structures include structures, lists, queues and trees.  A 

complete discussion of all data structures is beyond the scope of this text.  However, we shall 

consider structures in chapter 10 and lists chapter 13. 

      As we mentioned earlier, an array is sequence collection of relate data items that share a 

common name.  For instance, we can use an array name salary to represent a set of salaries of a 

group of employees in an organization.  We can refer to the individual salaries by writing a 

number called index or subscript in brackets after the array name.  For example, 
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salary [10] 

represents the salary of 10th employee.  While the complete set of values is referred to as an array 

individual values are called elements. 

      The ability to use a single name to represent a collection of items and to refer to an item 

by specifying the item number enables us to develop concise and efficient programs.  For 

example, we can use a loop construct, discussed earlier, with the subscript as the control variable 

to read the entire array, perform calculations, and print out the results.   

     We can use arrays to represent not only simple lists of values but also tables of data in 

two, three or more dimensions.  In this chapter, we introduce the concept of an array and discuss 

how to use it create and apply the following types of arrays. 

 One-dimensional arrays. 

 Two- dimensional arrays 

 Multi  dimensional arrays 

Data structures 

C supports a rich set of derived and user-defined data types in addition to a variety of 

fundamental types as shown below: 

 

 

 

Derived types  Fundamental Types 

 

 Arrays     

 Functions 

 Pointers 

         Data types 

User-definedtypes 
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 Integral types 

 Float types 

 Character types 

 Structures 

 Unions 

 Enumerations 

Arrays and structures are referred to as structured data types because they can be used to 

represent data values that have a structure of some sort.  Structured data types provide an 

organizational scheme that shows the relationships among the individual elements and facilitate 

efficient data manipulations.  In programming parlance, such data types are known as data 

structures. 

     In addition to arrays and structures, C supports creation and manipulation of the 

following data structures: 

 Linked lists 

 Stacks  

 Queues 

 Trees 

7.2 ONE-DIMENSIONAL ARRAYS 

A list of items can be given one variable name using only one subscript and such a 

variable is called a single-subscripted variable or a one-dimensional array.  In mathematics, we 

often deal with variables that are single-subscripted.  For instance, we use the equation. 

A=
∑ 𝒙𝒊𝒏𝒊=𝟏𝒏  

to calculate the average of n values of.  The subscripted variable xi refers to the ith element of x.  

In C, single-subscripted variable xi can be expressed as 

x[1],x[2],x[3],....x[n] 

The subscript can begin with number 0.  That is 
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                  X[0] 

is allowed. For example, if we want to represent a set of five numbers, say(35,40,20,57,19) by an 

array variable number, then we may declare the variable number as follows 

int number[5]; 

and the computer reserves five storage locations as shown below: 

  

number[0] 

number[1] 

number[2] 

number[3] 

number[4] 

                                                 

The values to the array elements can be assigned as follows: 

Number[0] = 35; 

 Number[0] = 40; 

 Number[2] = 20;  

 Number[3] = 57; 

 Number[4] = 19; 

this would cause the array number to store the values as shown below:  

 

   

 

 

 

35 

40 

20 

57 
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                     number[0] 

number[1] 

number[2] 

number[3] 

number[4] 

these elements may be used in programs just like any other C variable.  For example, the 

following are valid statements: 

a = number[0] + 10; 

number[4] =number[0] + number[2]; 

number[2] = x[5] + y[10]; 

value[6] = number[i] * 3; 

     The subscripts of an array can be integer constants, integer variables like i, or expressions that 

yield integers.  C performs no bounds checking and, therefore, care should be exercised to ensure 

that the array indices are within the declared limits. 

7.3 DECLARATION OF ONE-DIMENSIONAL ARRAYS 

Like any other variable, arrays must be declared before they are used so that the compiler can 

allocate space for them in memory.  The general form of array declaration is 

type variable-name[size]; 

     The type specifies the type of element that will be contained in the array, such as int, float, or 

char and the size indicates the maximum number of elements that can be stored inside the array.  

For example  

float height[50]; 

 declares the height to be array containing 50 real elements.  Any subscripts 0 to 49 are valid.  

Similarly 

int group[10]; 

18 
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declares the group as an array to contain a maximum of 10 integer constants.   Remember: 

 Any reference to the arrays outside the declared limits would not necessarily cause an 

error.  Rather, it might result in unpredictable program results. 

 The size should be either a numeric constant or a symbolic constant. 

The C language treats character strings simply as arrays of characters. The size in a 

character string represents the maximum number of characters that the string can hold. For 

instance, 

char name[10]; 

declares the name as a character array (string) variable that can hold a maximum of 10 

characters.  Suppose we read the following string constant int the string variable name. 

“WELL DONE” 

Each character of the string is treated as an element of the array name and is stored in the 

memory as follows: 

‘W’ 

 ‘E’ 

 ‘L’ 

 ‘L’ 

 ‘ ‘ 

‘D’ 

‘O’ 

‘N’ 

‘E’ 
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      When the compiler sees a character string, it terminates it with an additional null 

character. Thus, the element name [10] holds the null character’\0’.  When declaring character 

arrays, we must allow one extra element space for the null terminator. 

Program 7.1write a program using a single-subscripted variable to evaluate the following 

expressions: 

Total = ∑ ௜ଶଵ଴௜=ଵݔ  

The values of x1,x2,....are read from the terminal. 

     Program in Fig.7.1 uses a one-dimensional array x to read the values and compute the sum of 

their squares. 

Program 

main( ) 

{ 

int i; 

float x[10], value, total ; 

/*....................READING VALUES INTOARRAY...................*/ 

printf(“ENTER  10 REALNUMBERS\n”); 

for(i = 0; i<10; i++) 

{ 

 scanf(“%f”, &value); 

 x[i] = value; 

 } 

/*. . . . . .COMPUTATION OF TOTAL. . . . .*/ 
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 total = 0.0; 

 for(i=0 ; i<10; i++) 

  total = total + x[i] *x[i]; 

   

/*. . . . . .PRINTING OF x[I] VALUES AND TOTAL. . . */ 

 printf(“\n”); 

 for(i=0; i<10 i++) 

  printf(“x[%2d] = %5.2f\n”, i+1, x[i]); 

  printf(“\ntotal= %.2\n”, total); 

} 

Output 

  ENTER 10 REAL NUMBER 

  1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8,9.9,10.10 

   x[I] = 1.10 

   x[2] = 2.20 

   x[3] = 3.30 

   x[4] = 4.40 

   x[5] = 5.50  

   x[6] = 6.60 

   x[7] = 7.70 

   x[8] = 8.80 
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   x[9] = 9.90 

               x[10]  = 10.10  

Total = 446.86 

Fig .7.1 Program to illustrate one-dimensional array 

Note C99 permits arrays whose size can be specified at run time. See appendix “C99” Features 

7.4 INITIALIZATION OF ONE-DIMENSIONAL ARRAYS 

After an array is declared, its elements must be initialized. Otherwise, they will contain 

“garbage”. An array can be initialized at either of the following stages: 

 At compile time 

 At run time 

Compile Time Initialization 

We can initialize the elements of arrays in the same way as the ordinary variables when 

they are declared. The general form of initialization of arrays is: 

  type array-name [size] = (list of values); 

 The values in the list are separated by commas. For example, the statement 

   int number[3] =  {0,0,0}; 

Will declare the variable number as an array of size 3 and will assign zero to each element. If the 

number of values in the list is less than the number of elements, then only that many elements 

will be initialized. The remaining elements will be set to zero automatically. For instance,  

  float total[5] = {0,0,15,75,-10}; 

will initialize the first three elements to 0.0, 15 75 and -10.0 and the remaining two elements to 

zero.  

 The size may be omitted. In such cases, the compiler allocates enough space for all 

initialized elements. For example, the statement 
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   int counter[]   {1,1,1,1}; 

will declare the counter array to contain four elements with initial values 1. This approach works 

fine as long as we initialize every element in the array. 

 Character arrays may be initialized in a similar manner. Thus, the statement 

   char name[] = {‘j’, ‘o’, ‘h’, ‘n’, ‘\o’}; 

declares the name to be an array of five character, initialized with the string “john” ending with 

the null character alternatively, we can assign the string literal directly as under.   

   char name [ ] = “john”; 

(Character arrays and strings are discussed in detail in Chapter 8) 

 Compile time initialization may be partial. That is, the number of initializers may be less than 

the declared size. In such cases, the remaining elements are initialized to zero, if the array type is 

numeric and NULL if the type  is char. For example, 

   int number [5] = {10,20}; 

will initialize the first two elements to 10 and 20 respectively, and the remaining elements to 0. 

Similarly, the declaration. 

   char city [5] = {‘8’}; 

will initialize the first element to ‘B’ and the remaining four to NULL. It is a good idea, 

however, to declare the size explicitly, as it allows the compiler to do some error checking. 

 Remember, however, if we have more initializes than the declared size, the compiler will 

produce an error. That is, the statement 

   int number [3] = {10, 20, 30, 40} 

will not work. It is illegal in C. 
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Run Time Initialization 

An array can be explicitly initialized at run time. This approach is usually applied for 

initializing large arrays. For example, consider the following segment of a C program. 

   ---------- 

   ---------- 

   for (i=0; i < 100 I = i+1) 

   { 

    if   i  < 50 

   else 

    sum [i] = 1.0; 

   } 

   ------------ 

   ------------- 

 The first 50 elements of the array sum are initialized to zero while the remaining 50 

elements are initialized to 1.0 at run time. 

We can also use a read function such as scanf to initialize an array. For example, the statements  

   int x [3]; 

   scanf_”%d%d%d”, &x[0], &[1], &x[2]); 

will initialize array elements with the values entered through the keyboard. 

Program 7.2 

Given below is the list of marks obtained by a class of 50 students in an annual examination. 

43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74 81 49 37 
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40 49 16 75 87 91 33 2 58 78 65 56 76 67 45 54 36 73 12 21 

73 49 51 19 39 49 68 93 85 59 

Write a program coded in fig 7.2 uses the array group containing 11 elements, one for each range 

of marks. Each element counts those values falling within the range of values it represents. 

For any value, we can determine the correct group element by dividing the value by 10. 

For example, consider the value 59. The integer division of 59 by 10 yields.5. This is the element 

into which 59 is counted. 

Program 

  #define MAXVAL 50 

  #define COUNTER 11 

  main () 

   { 

   float   value[MAXVAL]; 

   int     I, low, high; 

   int   group [COUNTER] = {0,0,0,0,0,0,0,0,0,0,0} 

   /*. . . . . . . READING AND COUNTING…….*/ 

   for (i = 0; i < MAXVAL ; i++) 

   { 

   /*……….READING OF VALUES……..*/ 

   Scanf(“%f”, &value [i]); 

   /*……..COUNTING FREQUENCY OF GROUPS………*/ 

     ++ group [(int) (value[i])/10]; 

   } 

   /* . . . PRINTING OF FREQUENCY TABLE……*/  

   printf(“\n”); 

   printf(“GROUP RANGE FREQUENCY\n\n”); 

   for ( i= 0; i < COUNTER; i++) 

   { 

    low = i * 10; 
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    if(i == 10) 

        high = 100; 

   else 

    high = low +9; 

   printf(“%2d %3d to %3d %d\n”, 

    i+1, low, high, group[i]); 

    } 

   } 

Output 

  43   65  51  27  79  11  56  61  82  09  25  36  07  49  55  63  74 

  81  49  37  40  49  16  75  87  91  33  24   58  78  65  56  76  67 

  45  54  36  63  12  21  73  49  51  19  39  49  68  93  85  59 

 

  GROUP  RANGE   FREQUENCY 

  1       0 to 9   2 

  2   10 to 19   4 

  3   20 to 29   4 

  4   30 to 39   5 

  5   40 to 49   8 

  6   50 to 59   8 

  7   60 to 69   7  

  8   70 to 79   6 

  9   80 to 89   4 

  10   90 to 99   2 

  11   100 to 100   0 

   

Fig 7.2 Program for frequency counting 

Note that we have used an initialization statement. 

  int group [COUNTER] = {0,0,0,0,0,0,0,0,0,0,0,0}; 
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which can be replaced by 

    int group [COUNTER] = {0}; 

This will initialize all the elements to zero. 

Program 7.3 

The program shown in Fig.7.3 shows the algorithm, flowchart and the complete C 

program to find the two’s compliment of a binary number. 

Algorithm 

Step 1 - Start 

Step 2 - Read a binary number string (a[]) 

Step 3 - Calculate the length of string str (len) 

Step 4 - Initialize the looping counter k=0 

Step 5-  Repeat Steps 6-8 while a[k] != ‘\0’ 

Step 6-  If a[k]!=0 AND a[k]! goto step 7 else goto step 8 

Step 7-  Display error ‘Incorrect binary number format” and terminate the program  

Step 8-  k = k +1 

Step 9-  Initialize the looping counter I = len -1 

Step 10- Repeat step 11 while a[j]! = ‘1’ 

Step 11- i = i+1 

Step12- Initialize the looping counter j = i-1 

Step 13- Repeat step 14-17 while j>=0 

Step14- If a[j] =1 goto step 15 else goto step 16 

Step15- a[j] = ‘0’ 

Step16- a[j] = ‘1’ 

Step17- j= j+1 

Step18- Display a[] as the two’s compliment 

Step19- Stop 
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Flow chart                                                         

 

 

 yes no 
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Program 

  #include<stdio.h> 

  #include<conio.h> 

  #include<string.h> 

  void main () 

   { 

   char a[16]; 

   int i,j,k, len; 

   clrscr(); 

   printf(“Enter a binary number:”); 

   gets(a); 

   len=strlen(a); 

   for(k=0; a[k]!=’\0’:  k++) 

   { 

        if(a[k]!=’\0’; && a[k]!=’1’) 

         { 

  printf(“\nIncorrect binary number format ….. the program will quit”); 

  getch(); 

  exit(0); 

     } 

  } 

  for(i=len-1; a[i]!=’1’; i--) 

  ; 

  for(j=i-1; j>=0; j__) 

  { 

  if(a[j]==’1’) 

  a[j]=’0’; 

  else 

  a[j]=’1’; 

  } 

  printf(“\n2’s compliment = %s”,a); 
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  getch(); 

  } 

Output 

  Enter a binary number: 010111001001 

  2’s compliment = 10100110111 

Fig 7.3 Algorithm, flowchart and C program to find two’s compliment of a binary number 

Searching and Sorting 

Searching and sorting are the two most frequent operations performed on arrays. 

Computer Scientists have devised several data structures and searching and sorting techniques 

that facilitate rapid access to data stored in lists. 

Sorting is the process of arranging elements in the list according to their values, in 

ascending or descending order. A sorted list is called an ordered list. Sorted lists are especially 

important in list searching because they facilitate rapid search operations. Many sorting 

techniques are available. 

The three simple and most important among them are 

 Bubble set 

 Selection sort 

 Insertion sort 

Other sorting techniques include shell sort, merge sort and quick sort. 

Searching is the process of finding the location of the specified element in a list. The 

specified element is often called the search key. If the process of searching finds a match of the 

search key with a list element value, the search said to be successful; otherwise, it is 

unsuccessful. The two most commonly used search techniques are; 

 Sequential search 
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 Binary search 

A detailed discussion on these techniques is beyond the scope of this text. Consult any good 

book on data structures and algorithms. 

7.5 TWO-DIMENSIONAL ARRAYS 

So far we have discussed the array variables that can store a list of values. There could be 

situations where a table of values will have to be stored. Consider the following data table, which 

shows the value of sales of three items by four sales girls: 

 Item 1 Item2  Item3 

Salesgirl #1 

Salesgirl #2 

Salesgirl #3 

Salesgirl #4 

310 

210 

405 

260 

275 

190 

235 

300 

365 

325 

240 

380 

The table contains a total of 12 values, three in each line. We can think of this table as a 

matrix consisting of four rows and three columns. Each row represents the values of sales by a 

particular salesgirl and each column represents the values of sales of a particular item. 

In mathematics, we represent a particular value in a matrix by using two subscripts such 

as n. here v denotes the entire matrix and v refers to the value in the I the row and jth column. 

For example, in the above table v23 refers to the value 325. 

C allows us to define such tables of items by using two-dimensional arrays. The table 

discussed above can be define C as 

   v [4][3] 

Two-dimensional arrays are declared as follows: 
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   type array_name [row_size][column_size]; 

Note that unlike most othe languages, which use one pair of parentheses with commas to 

separate array sizes, C places each size in its own set of brackets. 

Two- dimensional arrays are stored in memory, as shown in fig 7.4. As with the single-

dimensional arrays, each dimension of the array is indexed from zero to its maximum size minus 

one; the first index selects the row and the second index selects the column within that row.  

 Column 0                         Column 1   Column 2 

Row 1 310 275 365 

Row 2 10 190 325 

Row 3 310 275 365 

 

Program 7.4 Write a program using a two-dimensional array to compute and print the following 

information from the table of data discussed above: 

The program and its output are shown in fig .7.5. The program uses the variable value in 

two-dimensions with the index I representing girls and j representing items. The following 

equations are used in computing the results: 

(a)   Total sales by mth girl = ∑ ሻଶ௝=଴݈ܽݐ݋ݐ_ሺ݃݅𝑟݈[݆][݉] ݁ݑ݈ܽݒ  

(b) total value of nth term = ∑ ଷ௜=଴[݊][݅]݁ݑ݈ܽݒ ሺ݈݅ܽݐ݋ݐ_݉݁ݐ[݊]ሻ 

(c) grand total = ∑ ∑ ଶ௝=଴ଷ௜=଴[݆][݅]݁ݑ݈ܽݒ  

                      = ∑ ݃݅𝑟݈_݈ܽݐ݋ݐ[݅]ଷ௜=଴  

                      =∑ ଶ௜=଴[݆]݈ܽݐ݋ݐ_݉݁ݐ݅  

Program  

 #define  MAXGIRLS   4  

 #define  MAXITEMS   3 
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 main ( ) 

 { 

  int value[MAXGIRLS][MAXITEMS]; 

  int  girl_total[MAXGIRLS], item_total[MAXITEMS]; 

  int  i, j, grand_total; 

 /*…………READING OF VALUES AND COMPUTING girl_total…….*/ 

  printf(“Input data\n”); 

  printf(“Enter values, one at a time, row-wise\n\n”) 

  for ( i =0; i < MAXGIRLS ;i++) 

  { 

  girls total[i] = 0; 

  for (j = 0; j < MAXITEMS ; j++) 

  { 

   scanf(“%d”, &value[i] [j]); 

   girl_total[i]= girl_total[i] + value[i] [j]; 

      } 

  } 

  /*……….COMPUTING item_total……………..*/ 

  for ( j=0; j < MAXITEMS ; j++) 

  { 

   item _total[j] = 0; 
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   for (i =0; I < MAXGIRLS; i++) 

    item_total[j] = item_total[j] + value[i][j]; 

   } 

   /*……COMPUTING grand_total…………………*/ 

   grand_total = 0; 

   for (i=0; I < MAXGIRLS; i++) 

   grand total = grand_total + girl_total [i] 

   /*...............PRINTING OF RESULTS………………..*/ 

   printf(“\n GIRLS TOTALS \n\n”); 

   for( i = 0; I < MAXGIRLS; i++) 

   printf(“Salesgirl[%d] = %d\n”, i+1, girl_total[i]); 

   printf(“\n ITEM TOTALS\n\n”); 

   for (j = 0; j<MAXITEMS; j++) 

   printf(“Item[%d] = %d\n”, j+1, item_total[j] ); 

   printf(“\nGrand total = %d\n”, grand_total); 

   } 

Output 

   Input data 

   Enter values, one at a time, row_wise 

   310 257 365 

   405 235 240 
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   260 300 380 

   GIRLS TOTAL 

   Salesgirl [1] = 950 

   Salesgirl [2] = 725 

   Salesgirl [3] = 880 

   Salesgirl [4] = 940 

   ITEM TOTALS  

   Item [1] = 1185 

   Item [2] = 1000 

   Item [3] = 1310 

   Grand total = 3495 

  Fig 7.5 Illustration of two-dimensional arrays 

Program 7.5 Write a program to compute and print a multiplication table for numbers 1 

to 5 as shown below. 

 1 2 3 4 5 

1 1 2 3 4 5 

2 2 4 6 8 10 

3 3 6 - -  

4 4 8 - -  

5 5 10 - - 25 
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The program shown in Fig.7.6 uses a two-dimensional array to store the table values. Each value 

is calculated using the control variables of the nested for loops as follows: 

  Product [i] [j] = row * column 

Where i denotes rows and j denotes columns of the product table. Since the indicates i and j 

range from o to 4, we have introduced the following transformation: 

 row = j+1 

                                                   column = j +1   

Program 

   #define ROWS 5 

   #define COLUMN 5 

   main () 

   { 

    int row, column, product[ROW][COLUMN]; 

    int i,j; 

    printf(“MULTIPLICATION TABLE\n\n”); 

    printf( “   “); 

    for(j=1; j <= COLUMNS ; j++) 

         printf(“%4d, j); 

    printf(“\n”); 

    printf(“…………………\n”);   

    for(i = 0; I < ROWS; i++) 

    { 
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     row = i +1; 

     printf(“%2d |”,  row); 

     for(j=1; j <= COLUMNS ; j++) 

     { 

          column = j; 

      product[i] [j] = row * column; 

      printf)”%4d, product[i][j]); 

      } 

      printf(“\n”); 

     } 

    } 

Output 

MULTIPLICATION TABLE 

  1 2 3 4 5 

       

1 1 2 3 4 5  

  2 2 4 6 8 10 

  3 3 6 9 12 15 

  4 4 8 12 16 20 

  5 5 10 15 20 25  

 

Fig 7.6 Program to print multiplication table using two-dimensional array 
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7.6 INITIALIZING TWO- DIMENSIONAL ARRAYS 

Like the one-dimensional rays, two-dimensional arrays may be initialized by following 

their declaration with a list of initial values enclosed in braces. For example 

   int table[2] [3] = { 0,0,0,1,1,1}; 

initializes the elements of the first row zero and the second row to one. The initialization is done 

row by row. The above element can be equivalently written as 

   int table [2] [3] = {0,0,0}, {1,1,1}; 

by surrounding the elements of the each row by braces. 

We can also initialize a two –dimensional array in the form of a matrix as shown below: 

   int table[2] [3] = { 

      {0,0,0), 

      {1,1,1} 

     }’ 

 Note the syntax of the above statements. Commas are required after each brace that 

closes off a row, except in the case of the last row. 

 When the array is completely initialized with all values, explicitly, we need not specify 

the size of the first dimension. That is, the statement  

                            int table [ ] [3] = { 

       {0,0,0),       

    {1,1,1} 

 }; 

is permitted. 
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      If the values are missing in an intializer, they are automatically set to zero. For instance, 

the statement  

    int table [2] [3]  =  { 

       {1,1} 

       {2}; 

  Will initialize the first two elements of the first two to one, the first element of the second 

row to two, and all other elements to zero. 

     When all the elements are to be initialized to zero, the following short-cut method may be 

used. 

    int [3] [5]  =  {  {0}, {0}, {0}}; 

  The first element of each row is explicitly initialized to zero while other elements are 

automatically initialized to zero. The following statement will also achieve the same result. 

    int m [3]  [5]   =  {0,0}; 

Program 7.6 A survey to know the popularity of four cars (Ambassador, fiat, Dolphin and 

Maruti) was conducted in four cities (Bombay, Calcutta, Delhi and Madras). Each person 

surveyed was asked to give his city and the type of car he was using. The results, in coded form, 

are tabulated as follows: 

M 1 C 2 B 1 D 3 M 2 B 4 

C 1 D 3 M 4 B 2 D 1 C 3 

D 4 D 4 M 1 M 1 B 3 B 3 

C 1 C 1 C 2 M 4 M 4 C 2 

D 1 C 2 B 3 M 1 B 1 C 2 

D 3 M 4 C 1 D 2 M 3 B 4 
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Codes represent the following information: 

    M - Madras   1  -Ambassador 

   D - Delhi    2- - Flat 

  C - Calcutta   3 - Dolphin 

   B - Bombay   4 - Maruti 

Write a program to produce a table showing popularity of various cars in our cities. 

  A two-dimensional array frequency is used as an accumulator to store the number of cars 

used. Under various categories in each city. For example, the element frequency  denotes the 

number of cars of type j used in city i. the frequency is declared as an array of size 5*5 and al he 

elements are initialized to zero. 

  The program shown in /fing.7.7 reads the city code and the car code, one set after 

another, from the terminal. Tabulation ends when the letter X is read in place of a city code. 

Program 

  main( ) 

  { 

  int i, j, car; 

  int frequency[5] [5] = { {0], {0}, {0}, {0}, {0} ); 

  char city; 

  printf(“For each person, enter the city code \n”); 

  printf(“followed by the car code.\n”); 

  printf(“Enter the letter X to indicate end.\n”) 

  /* ………..TABULATION BEGINS………………..*/  
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     for(i = 1; i < 100; i++) 

  { 

     scanf(“%sc”, &city); 

  if(city == ‘X’) 

     break; 

  scanf(“%d, &car); 

  switch(city) 

  { 

   case ‘B’ :  frequency[1] [car]++; 

         break; 

   case ‘C’ :  frequency[2][car]++; 

         break; 

   case ‘D’ :  frequency[3] [car]++; 

        break; 

   case ‘M’ :  frequency[4] [car]++; 

         break; 

   } 

  } 

  /*….TABULATION COMPLETED AND PRTING BEGINS…….*/ 

  printf(“\n\n”); 

  printf(“POPLARITY TABLE\n”); 
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  printf(“………………….\n”); 

  prntf(“City Ambassador Fiat Dolphin Maruti \n”); 

  printf(“…………………….\n”); 

  for(i=1; i < =4; i++) 

  { 

   switch(i) 

   { 

           case 1 : printf(“Bombay”);   

         break; 

           case2 :printf(“Calcutta”); 

         break; 

           case3 :printf(“Delhi”; 

          break; 

           case4 :printf(“Madras”); 

                   break; 

   } 

  for( j =1; j<=4; j++) 

    printf(“%7d”, frequency[i][j]); 

    printf(“\n”); 

  } 

  printf (“……………………….\n”); 
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  /*……………..PRINTING ENDS……….*/ 

  } 

Output 

  For each person, enter the city code   

  Followed by the car code. 

  Enter the letter X to indicate end. 

M 1 C 2 B 1 D 3 M 2 B 4 

C 1 D 3 M 4 B 2 D 1 C 3 

D 4 D 4 M 1 M 1 B 3 B 3 

C 1 C 1 C 2 M 4 M 4 C 2 

D 1 C 2 B 3 M 1 B 1 C 2 

D 3 M 4 C 1 D 2 M 3 B 4 

 

POPULARITY TABLE 

 

  

City  Ambassador  Fiat  Dolphin  Maruti 

 

Bombay 2   1  3   2 

Calcutta 4   5  2   0 

Delhi  2   1  3   2 

Madras  4   1  1   4 

 

Fig 7.7 Program to tabulate a survey data 

Memory Layout 

The subscripts in the definition of a two-dimensional array represent rows and columns. 

This format maps the way that data elements are laid out in the memory. The elements of all 

arrays are stored contiguously in increasing memory locations, essentially in a single list. If we 
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consider the memory as a row of bytes, with the lowest address on the left and the highest 

address on the right, a simple array will be stored in memory with the first element at the left end 

and the last element at the right end. Similarly, a two-dimensional array is stored “row-wise, 

starting from the first row and ending with the last row, treating each row like a simple array. 

This illustrated below. 

     Column 

      0          1         2 

               0   3 * 3 array  

 row    1 

      2 

Row 0                  row1    

 row2 

 

  [0][0]  [0][1]  [0][2]          [1][0]    [1][1] [1][2]                  [2][0]     [2][1]   [2][2] 

    1       2    3  4            5 6                           7                 8           9 

Memory Layout 

For a multi-dimensional array, the order of storage is that the first element stored has 0 in 

all its subscripts, the second has all of its subscripts 0 except the far right which has a value of 1 

and so o.  

 The elements of a 2 x 3 array will be stored as under 

 1        2        3         4        5       6        7        8      9 

 

 

 

 10       11        12      13     14     15      16      17     18 

10 20 30 

40 50 60 

70 80 90 

70 80 90 

10 20 30 40 50 60 

000 001 002 010 011 012 020 021 022 
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The far right subscript increments first and the other subscript increment in order from 

right to left. The sequence numbers 1,2,…………….18  represents the location of that element in 

the list. 

Program 7.7 The program in fig.7.8 shows how to multiply the elements of two N*N matrices. 

Program 

  #include<stdio.h> 

  #include<conio.h> 

  void main () 

  { 

  int    a1[10][10], a2[10][10], c[10][10], I, j, k, a, b; 

  clrscr (); 

  printf(“Enter the size of the square matrix\n”) 

  scanf(“%d”, &a); 

  b = a; 

  printf(“You have to enter the matrix elements in row-wise fashion\n”); 

  for(I = 0; i<a;i++) 

  { 

  for(j=0; j<b; j++) 

  { 

100 101 102 110 111 112 120 121 122 
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  printf(“\nEnter the next element in the 1st matrix=”); 

  scanf(“%d”, &a1[i][j]); 

  } 

  } 

  for(i=o; i<a; i++) 

  { 

  for(j=0; j < b; j++) 

  { 

  printf(“\n\nEnter the next element in the 2nd matrix=”); 

  scanf(“%d”, &a2[i][j]); 

  } 

} 

  printf(“\n\nEntered matrices are\n”); 

  for(i=0;i<a; i++) 

  { printf(“\n”); 

  for(j = 0; j<b; j++) 

  printf(“%d”, a1[i] [j]); 

  } 

  printf(“\n”); 

  for( i = 0; i<a; i++) 

  { pintf(“\n”); 
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  for(j=0; j<b; j++) 

  printf(“ %d”, a2[i][j]); 

  } 

  printf(“\n\nproduct of the two matrices is\n”); 

  for(i=0; i<a; i++) 

   for(j=0; j<b; j++)  

   { 

   c[i] [j] =0; 

   for(k=0 k<a; k++) 

   c[i] [j] = c[i] [j]+a1[i] [k]*a2[k] [j]; 

   } 

   for(i=0; i<a  i++) 

   {  printf(“\n”); 

   for(j=0; j<b ;j++) 

   printf(“%d”, c[i]  [j]); 

    } 

   getch  (); 

   } 

Output  

  Enter the size of the square matrix 

  2  
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  You have to enter the matrix element in row-wise fashion 

  Enter the next element in the 1st matrix = 1 

  Enter the next element in the 1st matrix = 0 

  Enter the next element in the 1st matrix = 2 

  Enter the next element in the 1st matrix = 3 

  Enter the next element in the 2nd matrix = 4 

  Enter the next element in the 2nd matrix = 5 

  Enter the next element in the 2nd matrix = 0 

  Enter the next element in the 2nd matrix = 2 

  Entered matrices are 

  1 0 

  2 3 

  4 5  

  0 2 

  Product of the two matrices is    

  4 5 

  8 16 

Fig 7.8 Program for N*N matrix multiplication 

Program 7.8 The program in fig.7.9. Shows how to find the transpose of a matrix 

           Algorithm 

 Step 1             - start  
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Step2  -  read a 3 x 3 matrix (a[3][3])]  

Step3  - initialize the looping counter i = 0 

Step4  - Repeat steps 5-9 while i<3 

Step5  - Initialize the looping counter j = 0 

step6  - Repeat steps 7-8 while j<3 

step7   - b[i] [j]= a[j] [i] 

step8  - j =j +1 

step9  - i = i +1 

step10  - Display b[] [] as the transpose of the matrix a[] []  

step11  - stop 

Program 

  #include<stdio.h> 

  #include<conio.h> 

  void main () 

  { 

  int i, j, a[3] [3], b[3] [3]; 

  clrscr(); 

  printf(“Enter a 3 X3, b[3] [3]; 

  for(i=0; i<3; i++) 

  { 

   for (j=0; j<3 j++) 
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   { 

   printf(“a[ %d][%d] = “,i,j); 

   scanf(“%d. &a[i][j]); 

   } 

  } 

  printf(“\nThe entered matrix is :\n”) 

  for(i =0; i<3; i++) 

  { 

   printf(“\n”); 

   for(j=0; j<3; j++) 

   { 

   printf(“%d\t”, a[i][j]); 

   } 

  for(i=0;i<3;i++) 

  { 

   for(j=0; j<3; j++) 

   b[i] [j] = a[j][i] 

 } 

 printf(“\n\nthe transpose of the matrix is :\n” 

 for(i=0; i<3; i++) 

 { 
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  printf(“\n”); 

  for(j=0; j<3; j++) 

  { 

  printf(“%d\t”, b[j][i]); 

  } 

  } 

  getch (); 

  } 

Output 

  Enter a 3 X 3 matrix: 

  a[0] [0] = 1 

  a[0] [1] = 2 

  a[0] [2] = 3 

  a[1] [0] = 4 

  a[1] [1] = 5  

  a[1] [2]  = 6  

  a[2] [0] = 7 

  a[2] [1] = 8 

  a[2] [2] = 9 

 The entered matrix is: 

 1 2 3 
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 4 5 6 

 7 8 9 

 The transpose of the matrix is: 

 1 4 7 

 2 5 8 

 3 6 9 

Fig 7.9 Program to find transpose of a matrix 

7.7 MULTI-DIMENSIONAL ARRAYS 

C allows arrays of three or more dimensions. The exact limit is determinate by the 

compiler. The general form of a multi-dimensional array is 

  type array_name [s1][s2][s3]………[sm]; 

where s is the size of the ith dimension. some example are: 

  int survey[3][5][2]; 

  float table[5][4][3][3]; 

Survey is a three-dimensional array declared to contain 180 integer type elements. Similarly 

table is a four-dimensional array containing 300 elements of floating-point type. 

The array survey may represent a survey data of rainfall during the last three years from 

January to December in five cities. 

If the first index denotes year, the second city and the third month, then the element 

survey [2][3][10] denotes the rainfall in the month of October during the second year in city-3. 

Remember that a three-dimensional array can be represented as a series of two-dimensional 

arrays as shown below:  
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Year 1 

 

 

 

 

 

 

Year 2 

 

 

 

  

ANSI C does not specify any limit for array dimension.  However, most compilers permit seven 

to ten dimensions.  Some allow even more. 

7.8 DYNAMIC ARRAYS 

So far, we crated arrays at compile time. An array creates at compile time by specifying 

size in the source code has fixed size and cannot be modified at run time. The process of 

allocating memory at compile time is known as static memory allocation and the arrays that 

receive static memory allocation are called static arrays. This approach works fine as long as we 

know exactly what our data requirements are. 

 

Month city 

1 2 …………….. 12 

1     

2     

     

5     

Month city 1 2 …………….. 12 

1     

2     

     

5     
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 Consider a situation where we want to use an array that can vary greatly in size. We must 

guess what will be the largest size ever needed and created the array accordingly. A difficult task 

in fact! Modern languages like C do not have this limitation. In C i is possible to allocate 

memory to arrays at run time. This feature is known as dynamic memory allocation and the 

arrays created at run time are called dynamic arrays, this effectively postpones the array 

definition to run time. 

 Dynamic arrays are created using what are known as pointer variables and memory 

management functions malloc, calloc and realloc. These functions are include in the header file 

<stidio.h>. the concept of dynamic arrays is used in creating an manipulating data structures 

such as linked lists, stacks and queues. We discuss in detail pointers and pointer variables in 

Chapter 11 and creating and managing linked lists in Chapter 13. 

7.9 MORE ABOUT ARRAYS 

What we have discussed in this chapter are the basic concepts of arrays and heir 

applications to a limited extent. There are some more important aspects of application of arrays 

they include: 

 Using printers for accessing arrays; 

 Passing arrays as function parameters; 

 Arrays as members of structures; 

 Using structure type data as array elements; 

 Arrays as dynamic data structures; and  

 Manipulating character arrays and strings. 

These aspects of arrays are covered later in the following chapters: 

 Chapter 8  : strings 

 Chapter 9 : Functions 

 Chapter 10 : Structures 

 Chapter 11 : Pointers 
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 Chapter 12 : Links Lists 

Just Remember 

● We need to specify three things, namely, name, type and size, when we declare an 

array. 

● Always remember that subscripts begin at 0 (not 1) an en at size-1. 

● Defining the size of an array as a symbolic constant makes a program more scalable. 

● Be aware of the difference between the “kth element” and the “element k”. The kth 

element has a subscript k-1, whereas the element k has a subscript of k itself. 

● Do not forget to initialize the elements; otherwise they will contain “garbage”. 

● Supplying more initializers in the initializer list is a compile time error. 

●  Use of invalid subscript is one of the common errors. An                    incorrect or 

invalid index may cause unexpected results.  

● When using expressions for subscripts, make sure that their results do not go outside 

the permissible range of 0 to size-1. Referring to an element outside the array bounds 

is an error. 

● When using control structures for looping through an array, use proper relational 

expressions to eliminate “off-by-one” errors. For example, for an array of size 5, the 

following for statements are wrong: 

for(i=1; i<=5; i++) 

for(i=0; i<=5; i++) 

for(i=0; i ==5; i++) 

for(i=0; i<4; i++) 

● Referring a two-dimensional array element likex]i,j] instead of x[i\[j] is a compile time 

error. 

● When initializing character arrays, provide enough space for the terminating null 

character. 

● Make sure that the subscript variables have been properly initialized before they are 

used. 
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● Leaving out the subscript reference operator [] in an assignment operation is compile 

time error. 

● During initializations f multi-dimensional arrays, it is an error to omit the array size for 

any dimension other than the first. 

Case Studies 

1. Median of a List of Numbers 

Problem: 

When all the items in a list are arranged in an order, the middle value which divides the items 

into two parts with equal number of items on either side is called the median. Odd numbers of 

items have just one middle value while even numbers of items have two middle values. The 

median for even number of items is therefore designated as the average of the two middle values. 

The major steps for finding the median are as follows: 

1. Read the items into an array while keeping a count of the items. 

2. Sort the items in increasing order. 

3. Compute median. 

 The program and sample output are shown in fig. 7.10. The sorting algorithm used as follows: 

1. Compare the first two elements in he list, say a[1], and a[2]. If a[2] is smaller 

than a[1], then interchange their values. 

2. Compare a[2] and a[3]; interchange them if a[3] as smaller than a[2]; 

3. Continue this process till the last two elements are compared an interchanged. 

4. Repeat the above steps n-1 times. 

In repeated trips through the array, the smallest elements ‘bubble up’ to the top. Because 

of this bubbling up effect, this algorithm is called bubble sorting. The bubbling effect is 

illustrated below for four items, 
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           Initial values      after step1            after step 2      after step3  

 

 

Trip-1 

 

 

 

 

 

Trip-2 

 

 

 

 

 

 

During the first trip three pairs of items are compared and interchanged whenever needed. 

It should be noted that the number 80, the largest among the items, has been moved to the bottom 

at the end of the first trip. This means that the element 80 (the last item in the new list) need not 

be considered any further. Therefore, trip-2 requires only two pairs to be compared. This time, 

the number 65( the second largest value) has been moved down the list. Notice that each trip 

brigs the smallest value 10 up by one level. 

80 

35 

65 

10 

35 

80 

65 

10 

35 

65 

15 

80 

35 

65 

80 

10 

35 

65 

10 

80 

35 

80 

65 

10 

35 

80 

65 

10 

35 

10 

65 

80 

10 

35 

65 

80 
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 The number of steps required in a strip is reduced by one for each trip made. The entire 

process will be over when a trip contains only one step. If the list contains n elements, then the 

number of comparisons involved would be n(n-1)/2 

Program 

#define N 10 

main( ) 

{ 

int i, j, n; 

float meadian, a[N]; 

printf(“Enter  the number of items\n”); 

scanf(“%d”, &n); 

/*reading items into array a*/ 

printf(“ inpu %d values \n”, n); 

for(i=1; i <=n ; i++) 

scanf(“%f”, &a[i]); 

/*sorting begins */ 

{  /* trip-i begins*/ 

for(i=1; i <=n-i; j++) 

if.a[i] <= a[j+1]) 

t = a[j]; 

a[j] = a[j+1]; 

a[j+1] = t; 
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} 

else  

continue; 

} 

} 

/*sorting ends*/ 

/*calculation of median*/ 

if(n % == 0) 

median = (a[n/2] + a[n/2+1]/2.0; 

else 

median = a[n/2 + 1]; 

/* printing */ 

for(i=1; i <= n; i++) 

printf(“%f”, a[i]); 

printf(“\n f\n”median is %f\n”, median); 

} 

Output 

Enter the number of items 

5 

Input 5 values 

1.111  2.222  3.333  4.444  5.555 
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5.555000   4.444000   3.333000   2.222000   1.111000 

Median is 3.333000 

Enter the number of items 

6 

Input 6 values 

3 5 8 9 4 6 

9.000000   8.000000   6.000000   5.000000   4.000000   3.000000  

Median is 5.500000 

Fig. 7.10 Program to sort list of numbers and determine median 

2.   Calculation of Standard Deviation 

In statistics, standard deviation is used to measure deviation of data from its mean. The 

formula for calculating standard deviation of n items is 

   s = √ܽݒ𝑟݅ܽ݊ܿ݁ 

where 

                                    variance = 
ଵ𝑛 ∑ ሺݔ௜ − ݉ሻଶ𝑛௜=ଵ  

and 

     m = mean = 
ଵ𝑛 ∑ ௜𝑛௜=ଵݔ  

The algorithm for calculation the standard deviation is as follows: 

 1.   Read n items 

 2.  Calculate sum and mean of the items. 

 3.  Calculate variance. 



297 

 

 4.  Calculate standard deviation. 

Complete program with sample output is shown in fig.7.11 

Program 

  #include<math.h> 

  #define  MAXSIZE 100 

  main ( ) 

  { 

    int i,n; 

  float value [MAXSIZE], deviation, 

   sum, sumsqr, mean, variance, stddeviation; 

  sum = sumsqr = n = 0; 

  printf(“Inut values input-1 to end\n’); 

  for(i=1; i< MAXSIZE; i++) 

  { 

   scanf(“%f, &value[i]); 

    if(value[i] == -1); 

        break; 

   sum += value[i]; 

   n += 1; 

   }   

   mean = sum/(float)n; 
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   for (i  = 1; i<=n; i++) 

   {  

    deviation = value[i] – mean  

    sumsqr += deviation * deviation: 

    } 

   variance = sumsqr/(float); 

   stddeviation = sqrt(variance); 

   printf(“\nNumber of items: %d\n”,n); 

   pritnt(“Mean :%f\n”, mean); 

   printf(“Standard deviation: %f\n”, stddeviation); 

   }  

Output 

  Input values: input  -1  to end 

  65 9 27 78 12 20 33 49 -1 

  Number of items: 8 

  Mean: 36.625000 

  Standard deviation:   23.510303 

Fig 7.11 Program to calculate standard deviation 

3.   Evaluating a Test 

A test consisting of 25 multiple – choice item is administered to a batch of 3 student. 

Correct answers and student response are tabulated as shown below: 
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     Items 

      

1   2    3   

4    5  6    

7   8   9   0   1  2    3   4   5   6   7    8   9   0    1   2  3   4   5 

Correct 

answer 

 

Student1                       

Student2 

Student3 

       

 

The algorithm for evaluating the answers of students is as follows: 

 1.   Read correct answers into an array. 

 2.   Read the responses of a student and count the correct ones. 

 3.   Repeat step-2 for each student. 

 4.   Print the result. 

A program to implement this algorithm is given if fig.7.12.  The program uses the 

following arrays. 

  key[i]  - To store correct answers of items 

  response[i]  - To store responses of students 

  correct[i] - To identify items that are answered correctly. 

Program  

  #define STUDENTS 3 
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  #define ITEMS 25 

  main () 

  { 

   char key [ITEMS+1], response[ITEMS+1]; 

   int count, I, student, n, 

    correct[ITEMS+1]; 

    /* Reading of Correct answers  */ 

    printf(“Input key to the items\n”); 

    for(i=0; i<ITEMS;  i++) 

    scanf(“%c”, &key[i]);  

    scanf(“%c”, &key[i]) 

    key[i] = “\0”; 

    /* Evaluation begins */ 

    for (student = 1; student <= STUDENTS; student++) 

    {  

    /*Reading student responses and counting correct ones*./ 

       count = 0; 

        printf(“\n”); 

       printf(“Input responses of student-%d\n”, student); 

       for(i=0, i<ITEMS; i++) 

      scanf(“%c”, &response[i]); 
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      scanf(“%c, &response[i]); 

      response[i] = ‘\0’; 

      for( i=0; i<ITEMS; i++) 

           correct[i]  =0; 

    for(i=0; i<ITEMS; i++) 

        if(response[i]  == key[i]) 

    { 

     count = count + 1; 

     correct[i]   =  1; 

    } 

    /* printing of results  */ 

    printf(“\n”); 

    printf(“Student-%d\n”, student); 

    printf(“Score is %d out of %d\n”, count, ITEMS); 

    printf(“Response to the items below are wrong\n”); 

    n = 0; 

    for(i=0; I <ITEMS i++) 

        if(correct[i] ==0) 

    { 

    printf(“%d”, i+1); 

    n = n+1; 
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    } 

    if(n ==0) 

        printf(“NIL\n”); 

    printf(“\n”); 

    } /* Go to next student */ 

    */ Evaluation and printing ends  */ 

    } 

Output 

  Input key t the items 

  abcdabcdabcdabcdabcdabcdabcdabcdabcd 

  Input responses of student-1 

  abcdabcdabcdabcdabcdabcda 

  Student-1 

  Score is 25 out of 25 

  Response to the following items wrong  

  NIL  

  Input responses of student-2 

  Abcdabcdabcdabcdabcddddddddd 

  Student-2 

  Score is 13 out of 25 

  Response to the following items are wrong 
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  5  6  7  8  17  18   21   22  23   25 

  Input response of student-3 

  Aaaaaaaaaaaaaaaaaaaaaa 

  Student-3 

  Score is 7 out of 25 

  Response to the following items is wrong 

  2  3  4  6   7  8  10   11  12  14  15    16   18   19  20    22   23     24 

Fig 7.12   Program to evaluate responses to  a multiple- choice test 

4.  Production and Sales Analysis 

A company manufactures five categories of product and the numbers of items 

manufactured and sold are recorded product-wise every week in a month. The company reviews 

its production schedule at every month-end. The review may require one or more of the 

following information: 

a) Value of weekly production and sales. 

b) Total value of all the products manufactured. 

c) Total value of all the products sold. 

d) Total value of each products sold. 

e) Total value of each product, manufactured and sold. 

Let us represent the products manufactured and sold by two two-dimensional arrays M and S 

respectively. Then   

 

M =     

   

M11 M12 M13 M14 M15 

M21 M22 M23 M24 M25 

M31 M32 M33 M34 M35 

M41 M42 M43 M44 M45 
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S = 

 

 

Where Mij represents the number of jth type product manufactured in ith week and Sij the 

number of jth product sold ir ith week. We may also represent the cost of each roduct by  a single 

dimensional array C as follows: 

Where Cj is the cost of jth type product. 

 We shall represent the value of products manufactured and ssold by two value arrays, 

namely, Mvalue  and Svalue. Then  

   Mvalue[i][j] = Mij x Cj 

   Svalue[i][j] = Sij  x  Cj 

A program to generate the required outputs for the review meeting is shown if Fig.7.13. the 

following additional variables are used: 

   Mweek[i] = value of all the products manufactured in week i 

         =  ∑ 𝑀݁ݑ݈ܽݒ[݅][݆]ହ௝=ଵ  

   Sweeek[i] = Value of all the products in week i 

         =  ∑ ହ௝=ଵ[݆][݅]݁ݑ݈ܽݒܵ  

                                   Mproduct[j]  = Value of jjth type product manufactured during the month 

         =  ∑ 𝑀݁ݑ݈ܽݒ[݅][݆]ସ௜=ଵ  

                                    Sproduct[j]  =   Value of jth type product sold during the month 

S11 S12 S13 S14 S15 

S21 S22 S23 S24 S25 

S31 S32 S33 S34 S35 

S41 S42 S43 S44 S45 
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         =   ∑ ସ௜=ଵ[݆][݅]݁ݑ݈ܽݒܵ  

                                    Mtotal     =  Total value of all the products manufactured during the                       

month 

      =   ∑ 𝑀݇݁݁ݓ[݅]ସ௜=ଵ     ∑ 𝑀݌𝑟ݐܿݑ݀݋[݆]ହ௝=ଵ  

                        Stotal    =   Total value of all the products sold during the month 

  =   ∑ ସ௜=ଵ[݅]݇݁݁ݓܵ     ∑ ହ௝=ଵ[݆]ݐܿݑ݀݋𝑟݌ܵ  

Program 

 main () 

{ 

int M[5] [6], S[5][6], C[6], 

Mvalue [5] [6], Svalue[5][6], 

Mweek[5], Sweek[5], 

Mproducts[6], Sproducts[6], 

Mtotal, Stotal, i, j, number; 

/* Input data  */ 

printf(“Enter products manufactured week_wise \n”); 

printf(“M11, M12, -----, M21, M22,--------etc\n”); 

for(i=1; i<=4, i++) 

for(j=1; j<=5 j++) 

scanf(“%d”, &M[i][j]); 

printf(“Enter products sold week_wise\n”); 
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printf(“S11, S12,---------, S21,S22---------etc\n”); 

for(i=1; i<=; i++) 

for(j=1; j<=5; j++) 

scanf(“%d” &S[i][j]); 

printf(“Ente cost of each product\n”); 

for(j=1; j<=5; j++) 

scanf(“%d”, &C[j]); 

/* Value matrices of production and sales */ 

for(i=1; i<=4; i++) 

for(j=1;j<=5;j++) 

{ 

Mvalue[i][j] =  M[i][j] * C[j] 

Svalue[i][j] =  S[i][j]  *C[j] 

} 

/* Total value of weekly production and sales */ 

for(i=1; i<=4; i++) 

{ 

Mweek[i] = 0; 

Sweek[i]  = 0; 

for(j=1; j<=5; j++) 

{ 
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Mweek[i] +=  Mvalue[i][j]; 

Sweek[i] +=  Svalue[i][j]; 

} 

} 

/* Monthly value of product_wise production and sales */ 

for(j=1; j<=5; j++) 

{ 

Mproduct[j]  = 0; 

Sproduct [j]   = 0; 

for(i=1; I <=4; i++) 

{ 

Mproduct[j]  +=  Mvalue[i][j]; 

Sproduct[j] += Svalue[i][j]; 

} 

} 

/* Grand total of production and sales values */ 

Mtotal  =  Stotal  = 0; 

for(i=1; i<=4; i++) 

{ 

Mtotal   += Mweek[i]; 

Stotal  += Sweek[i]; 
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} 

/********************************** 

Selection and printing of information required 

********************************** 

printf(“\n\n”); 

printf(“Following is the list of things you can\n”) 

printf(“request for Enter appropriate item number\n”); 

printf(“and press RETURN key\n\n); 

printf(“1 . Value matrices of production & sales\n”); 

printf( “2. Total value of weekly production & sales\n”); 

printf(“3. Product_wise monthly value of production &*); 

printf(“ Sales\n”); 

printf(“4. Grand total value of production & sales \n”); 

printf(‘5. Exit\n”); 

number  = 0; 

while (1) 

{ /* Beginning of while loop */ 

printf(“\n\n ENTER YOUR CHOICE:”); 

scanf(“5d”, &number); 

printf(“\n”); 

if(number ==5) 
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{ 

printf(“GOOD BYE\n\n”); 

break; 

} 

switch(number) 

{ /*Beginning of switch */ 

/* VALUE MATRICES  */ 

Case 1; 

printf(“ VALUE MATRIX OF PRODUCTION\n\n”); 

for(i=1 i<=4; i++) 

{ 

printf(“week(%d)\t”, i); 

for(j=1, j<=5; j++) 

printf(“%7d”, Mvalue[i][j]); 

printf(“\n”); 

} 

printf(“\n VALUE MATRIX OF SALEES\n\n”); 

for(i=1 i<=4 i++) 

{ 

printf(“\n Week(%d)\t”,i); 

for(j=1; j<=5; j++) 
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printf(“%7d”, Svalue[i][j]); 

printf(“\n”); 

} 

break; 

/* WEEKLY ANALSIS */ 

Case 2: 

printf(“ TOTAL WEEKLY PRODUCTION & SALES\n\n”); 

printf(“            PRODUCTION     SALESS\n”); 

printf(“   -----------  -------       \n”); 

for(i=1; i <=4; i++) 

printf(“ Week(%d)\t”, i); 

printf(“  %7d\t%7d\n”, Mweek[i], Sweek[i]); 

} 

break; 

/* PRODUCT WISE ANALYSIS */ 

Case 3: 

printf(“ PRODUCT_WISETOTALPRODUCTION &”); 

printf(“SALES\n\n”); 

printf(“            PRODUCTION     SALESS\n”); 

printf(“   -----------  -------       \n”); 

for(j=1; j<=5; j++) 
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printf(“ Product(%d)\t”, i); 

printf(“  %7d\t%7d\n”, Mproduct[j], Sproduct[j]); 

} 

break; 

/* GRAND TOTALS */ 

Case 4: 

printf(“ GRAND TOTAL OF PRODUCTION * SALES \n”); 

printf(“\n Total production = %d\n”, Mtotal): 

printf(“Total sales  =  %d\n”, Stotal); 

break; 

/* DEFAULT  */ 

default   : 

printf(“ Wrong choice, select again\n\n”); 

break; 

} /* End of switch */ 

} /* End of while loop */ 

printf(“ Exit from the program\n\n”); 

} /*   End of main  */ 

 Output 

   Enter products manufactured week_wise 

   M11, M12, ------, M21, M22, ---------------etc 
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   11 15 12 14 13 

   13 13 14 15 12 

   12 16 10 15 14 

   14 11 15 13 12 

   S11, S12, --------S21, S22, --------etc 

   10 13 9 12 11 

   12 10 12 14 10 

   11 14 10 14 12 

   12 10 13 11 10 

                                    Enter cost of each product 

   10 20 30 15 25 

Following is the list of things you can 

Request for. Enter appropriate item number 

And press RETURN key 

   1.  Value matrices of production & sales 

   2.   Total value of weekly production & sales 

   3.  Product_wise monthly value of production & sales 

   4.  Grand total value of production & sales 

   5.   Exit 

   ENTER YOUR CHOICE: 1 

   VALUE MATRIX OF PRODUCTION 
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   Week(1) 110 300 360 210 325 

   Week(2) 130 260 420 225 300 

   Week(3) 120 320 300 225 350 

   Week(4) 140 220 450 185 300 

   VALUE MATRIX OF SALES 

   Week(1) 100 260 270 180 275 

   Week(2) 120 200 360 210 250  

   Week(3) 110 280 300 210 300 

   Week(4) 120 200 390 165 250 

    

                                   ENTER YOUR CHOICE: 2 

   TOTAL WEEKLY PRODUUCTION & SALES  

     PRODUCTION SALE 

   Week(1) 1305   1085 

   Week(2) 1335   1140  

   Week(3) 1315   1200 

   Week(4) 1305   1125 

   ENTER YOUR CHOICE:3 

   PRODUCT_WISE TOTAL PRODUCTION & SALES 

     PRODUCTION SALE 

   Product(1)   500     450 
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   Product(2) 1100     940 

   Product(3) 1530   1320 

   Product(4)    855     765  

   Product(5) 1275   1075 

   ENTER YOUR CHOICE: 4 

   GRAND TOTAL OF PRODUCTION & SALES 

   Total production = 5260 

   Total sales  = 4550 

   ENTER YOUR CHOICE:5 

   GOOD BYE 

   Exit from the program 

Fig. 7.13 Program for production and sales analysis. 
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8 CHARACTER ARRAYS AND STRINGS 

Key Terms 

String  | strcat | strcmp | strcpy | strstr 

8.1 INTRODUCTION 

A string is sequence of characters that is treated as single data item. We have used string in a 

number of examples in the past any group of characters (except double sign) defined between 

double quotation marks is a string constant. Example: 

   ‘Man is obviously made to think” 

 If we want to include a double quote in the sting to be printed, then we may use it with a 

back slash as shown below.  

   “\” Man is obviously made to think,\” said Pascal,” 

  For example, 

   printf (“\” Well Done!”\”) 

will output the string 

   “Well Done !” 
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While the statement 

   printf (“Well Done !”); 

will output the string 

   Well Done ! 

 Character string is often used to build meaningful and readable programs. The common 

operations performed on character strings include: 

 Reading and writing strings. 

 Combining strings together. 

 Copying one string to another 

 Comparing strings for equality. 

 Extracting a portion of a string. 

   In this chapter, we shall discuss these operations in detail and examine library functions 

that implement them. 

8.2 DECLARING AND INITIALIZING STRING VARIABLES 

C does not support sting as a data type. However, it allows us to represent strings as character 

arrays. In C, therefore, a string variable is any valid C variable name and is always declared as an 

array of characters. The general form of declaration of string variable is: 

   char string_name [size]; 

 The size determines the number of characters in the string_name. Some examples are: 

   char city [10]; 

   char name[30]; 

 When the compiler assigns a character string to character array, it automatically supplies 

a null character (‘10’) at the end of the string. Therefore, the size should be equal to the 

maximum number of characters in the sting plus one. 
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 Like numeric arrays, character arrays may be initialized when they are declared, C 

permits a character array to be initialized in either of the following two forms: 

   char city-[9] = “NEW YORK”; 

   char city-[9] = {‘N’,’E’,’W’,’ ’,’Y’,’O’,’R’,’K’,’\0’}; 

The reason that city had to be 9 elements long is that the string NEW YORK contains 8 

characters and one element space is provided for the null terminator. Note that when we initialize 

a character array by listing its elements, we must supply explicitly the null terminator. 

 C also permits us to initialize a character array without specifying the number of 

elements. In such cases, the size of the array will be determined automatically, based on the 

number of elements initialized. For example, the statement 

   char string [ ] = {‘G’,’O’,’O’,’D’,’\0’}; 

defines the array string as a five element array. 

 We can also declare the size much larger than the string size in the initialize. That is, the 

statement. 

               char str [10] = ‘GOOD’; 

 is permitted. In this case, the computer creates a character array of size. 10, places the 

value “GOOD” in it, terminates with the null character, and initializes all other elements to 

NULL. The storage will look like: 

G O O D \0 \0 \0 \0 \0 \0 

 

However, the following declaration is illegal. 

  char str2[3] = ‘GOOD’; 

 This will result in a compile time error. Also not that we cannot separate the initialization 

from declaration. That is, 
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  char str3[5]; 

  str3 = “GOOD”; 

is not allowed. Similarly, 

  char s1[4] = “abc”; 

  char s2[4]; 

  s2 = s1; /* Error */ 

is not allowed. An array name cannot be used as the left operand of an assignment operator. 

Terminating Null Character 

You must be wondering, ‘why do we need a terminating null character?’ as we know, a string is 

not a data type in /c,, nut it is considered a data structure stored in an array the sting is a variable-

length structure and is stored in a fixed-length array. The array size is not always the size of the 

string an most often if is much larger than the string stored in it. Therefore, the last element of 

the array need not represent the end of the string. We need some way to determine the end of the 

string data and the null character serves as the ‘end-of-string” marker. 

8.3 READING STRINGS FROM TERMINAL 

Using scanf Function 

The familiar input ‘unction scanf can be used with %s format specification to read in s string of 

characters. Example: 

char address[10] 

scanf(“%s”, address); 

 The problem with the scanf function is that it terminates its input on the first white space 

it finds. A while space includes blanks, labs, carriage returns, form feeds, and new lines. 

Therefore, if the following line of text is typed in at the terminal. 

NEW YORK 



319 

 

Then only the string “NEW “will be read into the array address, since the blank space after the 

word “NEW” will terminate the reading of string. 

 The scanf function automatically terminates the string that is read with a null character 

and therefore the character array should be large enough to hold the input string plus the null 

character. Note that unlike previous scanf calls, in the case of character arrays, the ampersand 

(&) is not required before the variable name. 

 The address array is created in the memory as shown below: 

N E W \0 ? ? ? ? ? ? 

  0 1 2       3         4         5     6    7  8 9 

Note that the unused locations are filled with garbage. 

If we want to read the entire line, “NEW YORK”,  then we may use two character arrays of 

appropriate sizes. That is,  

   char adr1[5], adr2[5]; 

   scanf(“%s %s”, adr1, adr2); 

With the line of text  

   NEW YORK 

Will assign the string “NEW “ to adr1 and “YORK”” to adr2. 

Program 8.1 

Write a grogram to read a series of words from a terminal using scanf function. 

The program shown in fig.8.1 reads four words and displays then on the screen. Note that the 

string ‘Oxford Road” is treated as two words while the string ‘Oxford-Road’ as one word. 

Program 

   main () 
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   { 

    char word1[40], word2[40], word3[40], word4[40] 

    printf(“Enter text :\n”); 

    scanf(“%s %s”, word1, word2); 

    scanf(“%s”, word3); 

    scanf(“%s”, word4) 

    printf(“\n”); 

    printf(“word1 = %s\nword2 = %s\n”, word1, word2); 

    printf(“word3= %s\nword4 = %s\n”, word3, word4); 

   } 

Output 

  Enter text : 

  Oxford Road, Londan M17ED 

  word1 = Oxford 

   word2 = Road, 

  word3 = Londan 

  word4 = M17ED 

  Enter text : 

  Oxford-Road, Londan-M17ED United Kingdom 

 word1 = Oxford-Road 

 word2 = Londan-M17ED 
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 word3 = United 

 word4 = Kingdom 

Fig. 8.1 Reading a series of words using scanf function 

 we can also specify the field width using the form %ws in the scanf statement for reading 

a specified number of characters from the input string. Example: 

   scanf(“%ws”, name); 

here, two things may happen. 

1. The width w is equal to or greater than the number of characters typed in.  The entire 

string will be stored in the string variable. 

2. The width w is less than the number of characters in the string. The excess characters 

will be truncated and left unread. 

Consider the following statements: 

   Char name[10] 

   Scanf(“%5s”, name); 

The input string RAM will be stored as 

R A M \0 ? ? ? ? ? ? 

          0            1       2        3         4        5       6       7         8          9 

The input string KRISHNA will be stored as: 

K R I S H \0 ? ? ? ? 

          0            1       2        3         4        5       6       7         8          9 

Reading a Line Text 

We have seen just now that scanf with %s or %ws can read only strings without 

whitespaces. That is, they cannot be used for reading a text containing more than one word. 

However, C supports a format specification known as the edit set conversion code %[..] that can 
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be used to read a line containing a variety of characters, including whitespaces. Recall that we 

have used this conversion code in Chapter 4. 

For example, the program segment 

   char line [80]; 

   scanf(“%[^\n]”, line); 

   printf(“%s”, line); 

Will read a line of input from the keyboard and display the same on the screen. We would very 

rarely use this method, as C supports an intrinsic string function to do this job. This is discussed 

in the next section. 

Using getchar and gets Functions 

We have discussed in Chapter 4 as to how to read a single character from the terminal, 

using the function getchar. We can use this function repeatedly to read successive single 

characters rom the input and place them into a character array. Thus, entire line of text can be 

read and stored in an array. The reading is terminated when the newline character(‘\n’) is entered 

and the null character is then inserted at the end of the string. The getchar function call takes the 

form: 

   char ch; 

   Ch = getchar(); 

Note that the getchar function has no parameters. 

Program 8.2 Write a program to read a line of text containing a series of words from the 

terminal. 

The program shown in fig.8.2 can read a line of text (up to a maximum of 80 characters) 

into the string line using getchar function. Every time a character is read, it is assigned to its 

location in the string line and then tested for newline character.  When the newline character is 

replaced by the null character to indicate the end of character string. 
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 When the loop is exited, the value of the index c is one number higher than the last 

character position in the string (since it has been incremented after assigning the new character to 

the string). Therefore the index value c-1 gives the position where the null character is to be 

stored. 

Program 

  #include < stdio.h> 

  main ( ) 

  { 

   char line[81], character 

   int c; 

   c = 0; 

   printf(“Enter text. Press <Return> at end\n”); 

   do  

   { 

    character = getchar(); 

   line[c] = character 

   c++; 

   } 

   while(character != ‘\n\); 

   c = c -1; 

   line[c] = ‘\0’; 

   printf(“\n%s\n”, line); 
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   } 

Output 

   Enter text, press <Return> at end 

   Programming in C is interesting 

   Programming in C is interesting 

   Enter text. Press <Return> at end 

   National Center for Expert System, Hyderabad. 

   National Center for Expert System, Hyderabad. 

   Fig .8.2 Program to read a line of text from terminal 

 Another and more convenient method of reading a string of text  containing whitespace is 

to use the library function gets available in the <stdio.h> header file. This is a simple function 

with one string parameter and called as under: 

   gets(str); 

str is a string variable declared properly. It reads characters into str from the keyboard until a 

new-line character is encountered and then appends a null character to the string. Unlike scanf, if 

does not skip whitespaces. For example the code segment 

   char line[80]; 

   gets (line); 

   printf (“%s”, line);  

reads a line of text from the keyboard and displays it on the screen. The last two statements may 

be combined as follows: 

   printf(“%s”, gets(line)); 
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(Be careful not to input more character that can be stored in the string variable used. Since C 

does not check array-bounds, it may cause problems) 

 C does not provide operators that work on strings directly. For instance we cannot assign 

one string to another directly. For example, the assignment statements. 

   string   = “ABC”; 

   string2 = string2; 

are not valid. If we really want to copy the characters in string2 into string1, we may do so on a 

character-by-character basis. 

Program 8.3 Write a program to copy one string into another and count the number of 

characters copied. 

The program is shown in fig.8.3. We use a for loop to copy the characters contained 

inside string2 into the string1. The loop is terminated when the null character is reached. Note 

that we are again assigning a null character to the string1. 

Program 

  main ( ) 

   { 

   char string1[80], string[80]; 

   int i; 

   printf(“Enter a string \n”); 

   printf(“?”); 

   scanf(“%s”, string2); 

   for( i = 0; string2[i] != 0’; i++) 

    string1[i] = string2[i] 
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   string1[i] = ‘\0’; 

   printf(“\n”); 

   printf(“%s\n”, string1); 

   printf(“Number of characters = %d\n”, i); 

   } 

Output 

   Enter a string 

   ?Manchester 

   Manchester 

   Number of characters = 10 

   Enter a string 

   ? Westminister 

   Westminister 

   Number of characters = 11 

Fig 8.3  Copying one string into another 

 

Program  8.4 The program in fig 8.4 shows how to write a program to find the number of 

vowels and consonants in a text string. Elucidate the program and flowchart for the program. 

Algorithm 

Step 1 – Start 

Step 2 – Read a text string (str) 
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Step 3 – Set vow = 0. Cons = 0, i =0 

Step 4 – Repeat steps 5-8 while {str[i]!= ‘\0’} 

Step 5 – if srt[i] = ‘a’ OR str[i] = ‘A’ OR str[i] = ‘e’ OR str[i] = ‘E’ OR str[i] = ‘i’ 

   OR str[i] = ‘I’ OR str[i] =’o’ OR str[i] = ‘o’ OR str[i] = ‘u’ OR str[i] = ‘U’ 

   goto Step 6 else goto step 7 

Step 6 – Increment the vowels counter by I (vow = vow+1) 

Step 7 – Increment the consonants counter by 1 (cons = cons+1) 

Step 8 – i = i + 1 

Step 9 – Display the number of vowels and consonants (vow, cons) 

Step 10 – Stop 

Flow chart 

Program 

 #include<stdio.h> 

 #include<conio.h> 

 #include<string.h> 

 void main () 

 

 

 

 

 

Start 

Read text string str 

Vow = 0  cons = 0  i = 0 

Is str[]=\0 
Display vow 

Display cons 
Stop 

Isstr[i]=a or 

……str[i]=u? 

Vow = vow +1 Cons = cons+1 

I = i+q 
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{ 

char str[30]; 

int vow = 0, cons = 0, i= 0; 

 clrscr (); 

 printf(“Enter a string:”); 

 gets (str); 

 while (str[i] != ‘\0’) 

 { 

  if(str[i] == a’ II str[i] == ‘A’ II str[i] == ‘e’ II str[i] ==’E’ II str[i] ==’i’ 

  II str[i] == ‘I’ II str[i] ==’o’ II str[i] == ‘o’ II str[i] == ‘u’ II str[i] ==’u’ 

  vow++; 

 else 

  cons++; 

 i++; 

 } 

  printf(“\nNumber of Vowels = %d”, vow); 

  printf(“\nNumber of Consonants = %d”,cons); 

 getch(); 

 } 
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Output 

 

 Enter a string : Chennai 

 Number of Vowels = 3 

 Number of Consonants = 4 

Fig 8.4 Program to find the number of vowel and consonants in a text string 

8.4 WRITING STRINGS TO SCREEN 

Using printf Function 

We have used extensively the printf function with %s format to print strings to the screen. The 

format %s can be used to display an array of characters that is terminated by the null character. 

For example, the statement 

  printf (“%s”, name); 

can be used to display the entire contents of the array name. 

 We can also specify the precision with which the array is displayed. For instance, the 

specification 

   %10.4 

indicates that the first four characters are to be printed in a field width of 10 columns. 

 However, if we include the minus sign in the specification (e.g.%-10.4s), the string will 

be printed left-justified. The program 8.4 illustrates the effect of various %s specifications. 

Program 8.5 Write a program to store the string ‘United Kingdom” in the array country and 

display the string under various format specifications. 

 The program and its output are shown in fig 8.5.  The output illustrates the following 

features of the %s specifications. 
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1.   When the field width is less than the length of the string, the entire string is      

printed. 

2.    The integer value on the right side of the decimal point specifies the number of 

characters to be printed.   

3.      When the number of characters to be printed is specified as zero, nothing is printed. 

4.   The minus sign in the specification causes the string to be printed left-justified. 

5.     The specification % .ns prints the first n characters of the string. 

Program 

  main () 

  { 

     char country[15] = “United Kingdom”; 

     printf(“\n\n”); 

     printf(*123456789012345*\n”); 

  printf(“------------------\n*); 

  printf(“%15s\n”, country); 

  printf(“5s\n”, country); 

  printf(“15.6s\n”, country); 

  printf(“%-15.6s\n*, country); 

  printf(“%.3s\n”, country); 

  printf(“%s\n”, country); 

  printf(“----------------------\n”); 

  } 
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Output 

  *123456789012345* 

  -------------- 

  United Kingdom 

  United Kingdom 

   United 

  United 

  Uni 

  United Kingdom 

  --------------- 

Fig 8.5 Writing strings using %s format 

 The printf of UNIX supports another nice feature that allows for variable field width or 

precision. For instance 

  printf(“ %*, *s\n”, w, d, string); 

prints the first d characters of the string in the field width of w. 

 This feature comes in handy for printing a sequence of characters. Program 8.5 illustrates 

this. 

Program 8.6 Write a program using for loop to print the following output.  

  C 

  CP 

  Cpr 

  CPro 
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  ……………. 

  ………… 

  CProgramming 

  CProgramming 

  ………. 

  ……….   

  CPro 

  CPr 

  CP 

  C 

The outputs of the program in Fig.8.6 for variable specifications %12*s,%*s and %*1s are 

shown in Fig.8.7. which further illustrates the variable field width and the precision 

specifications. 

Program 

  main ( ) 

  { 

     int c, d; 

    char string[] = “CProgramming”;  

    printf(“……………..\n”); 

  for (c =0 ; c <=11, c++) 

  { 

     d = c +1; 
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     printf(“|%-12,*s|\n”, d, string); 

  } 

  printf(“|------------------|\n”); 

  for ( c = 11; c >=0; c--) 

  { 

      d = c +1; 

     printf(“|%-12,*s|\n”, d, string); 

  } 

     printf(“----------------\n”); 

  } 

Output 

  C 

  CP 

  CPr 

  CPro 

  CProg 

  CProgr 

  CProgra 

  CProgram 

  CProgramm 

  CProgrammi 
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  CProgrammin 

  CProgramming 

  CProgrammin 

  CProgrammi 

  CProgramm 

  CProgram 

  CProgra 

  CProgr 

  CProg 

  CPro 

  CPr 

  CP 

  C 

Fig 8.6 Illustration of variable field specifications by printing sequences of characters 

C                                              C|   C| 

  CP    CP|     C| 

  CPr    CPr|       C| 

  CPro    CPro|         C| 

  CProg    CProg|          C| 

  CProgr     CProgr|            C| 

  CProgra    CProgra|              C| 
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  CProgram     CProgram|                C| 

  CProgramm     CProgramm|       C| 

                        CProgrammi                           CProgrammi|           C|       

    CProgrammin                         CProgramming|        C| 

  CProgrammin              CProgramming|      C| 

  CProgrammi    CProgrammi|     C| 

  CProgramm     CProgramm|   C| 

  CProgram     CProgram|            C| 

                        CProgra     CProgra|          C| 

  CProgr     CProgr|        C| 

  CProg      CProg|      C| 

  CPro      CPro|   C| 

                        CPr       CPr|            C| 

  CP      CP|          C| 

  C      C|        C| 

 

Fig 8.7 Further illustrations of variable specifications 

Using putchar and puts Functions 

Like getchar, C supports another character handling function putchar to output the values 

of character variables. It takes the following form: 

  char ch =  ‘A’; 
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  putchar (ch); 

  The function putchar requires one parameter. This statement is equivalent to: 

  printf(“%c, ch); 

 We have used putchar function in Chapter 4 to write characters to the screen. We can use 

this function repeatedly to output a string of characters stored in an array using a loop. Example: 

  char name[6] = “PARIS” 

  for (i=o, i<5 i++) 

   putchar (name[i]; 

  putchar (‘\n’); 

another and more convenient way of printing string values is to use the function puts declared in 

the header file <stdio.h>. This is a one parameter function and invoked ass under: 

   puts (str); 

where str is a string variable containing a string value. This prints the value of the string variable 

str and then moves the cursor to the beginning of the next line on the screen. For example, the 

program segment 

   char line[80]; 

   gets (line); 

   puts (line); 

reads a line of text from the keyboard and displays it on the screen. Note that the syntax is very 

simple compared to using the scanf and printf statements. 

8.5 ARITHMETIC OPERATIONS ON CHARACTERSS 

C allows us to manipulate characters the same way we do with numbers. Whenever a 

character constant or character variable is used in an expression, it is automatically converted 
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into an integer value by the system. The integer value depends on the local character set of the 

system. 

 To write a character in its integer representation, we may write it as an integer. For 

example, if the machine uses the ASCII representation, then 

   x = ‘a’; 

   printf (“%d\n”,x); 

will display the number 97 on the screen. 

 It is also possible to perform arithmetic operations on the character constants and 

variable. For example, 

   x = ‘z’-1 

is valid statement.  In ASCII, the value of ‘z’ is 122 and therefore, the statement will assign the 

value 121 to the variable x. 

 We may also use character constants in relational expressions. For example, the 

expression 

   ch >= ‘A’ && ch<= ‘Z’ 

would test whether the character contained in the variable ch is an upper-case letter. 

 We can convert a character digit to its equivalent integer value using the following 

relationship: 

   x = character – ‘0’; 

where x is defined as an integer variable and character contains the character digit. For example, 

let us assume that the character contains the digit ‘7’. 

Then,  

   x = ASCII value of ‘7’ – ASCII value of’ ‘0’ 
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      = 55-48 

      = 7 

The C library supports a function that converts a string of digits into their integer values. The 

function takes the form 

   x = atoi(string) 

 x is an integer variable and string is a character array containing a string of digits. 

Consider the following segment of a program: 

   number = “1988”; 

   year    =  “ atoi(number); 

number is a string variable which is assigned the string constant “1988”. The function atoi 

converts the string “1988” (contained in number) to its numeric equivalent 1988 and assigns it to 

the integer variable year. String conversion functions are stored in the header file <std.lib.h> 

Program 8.7 Write a program which would print the alphabet set a to z and A to Z in decimal 

and character form. 

The program is shown in fig.8.8 In ASCII character set, the decimal numbers 65 to 90 represent 

upper case alphabets and 97 to 122 represent lower case alphabets. The values from 91 to 96 are 

excluded using an if statement in the for loop. 

Program 

  main () 

  { 

        char c; 

     printf(“\n\n”); 

     for(c =65; c <= 122; c = c+1) 
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  { 

      If (c >90 && c <97) 

   continue; 

    printf(“|4%d = %c”, c, c); 

    } 

    printf(“|\n”); 

  } 

Output 

| 65 – A | 66 – B| 67 – C |68 – D | 69 – E | 70 – F  

| 71 – A | 72 – B | 73 – C | 74 – D |75 – E | 76 – L 

……………………………………………………. 

……………………………………………………… 

…………………………………………………… 

| 119 – W | 120 – X |121 – Y | 122 – Z | 

8.6 PUTTING STRINGS TOGETHER 

Just as we cannot assign one string to another directly, we cannot join two strings 

together by the simple arithmetic addition. That is, the statements such as 

  string3 = string1 + string2; 

  string2 = string1 + “hello”; 

are not valid. The characters from string 1 and string 2 should be copied into the string3 one after 

the other. The size of the array string3 should be large enough to hold the total character. 
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 The process of combining two strings together is called concatenation. Program 8.9 

illustrates the concatenation of three strings. 

Program 8.8 The names of employees of an organization are stored in three arrays, namely 

first_name, second _name, and last_name. Write a program to concatenate the three parts into 

one string to be called name. 

The program is given in Fig.8.9. Three for loops are used to copy the three strings. In the 

first loop, the characters contained in the first_name are copied into the variable name until the 

null character is reached. The null character is not copied; instead it is replaced by a space by the 

assignment statement 

   name[i+j+1] = second_name[j]; 

 If first_name contains 4 characters, then the value of i at this point will be 4 and therefore 

the first character from second_name will be placed in the fifth cell of name. Note that we have 

stored a space in the fourth cell. 

 In the same way, the statement 

   name [i+j+k+2] = last_name[k] 

is used to copy the characters from last_name into the proper locations of name. 

 At the end, we place a null character to terminate the concatenated string name. In this 

example, it is important to note the use of the expressions i+j+1 and i+j+k+2. 

Program 

  main () 

  { 

  int i, j, k ; 

  char first_name[10] = {“VISQANATH”} 

  char second_name[10] = {“PRATAP”}; 
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  char last_name[10] = {“SINGH”}; 

  char name[30]; 

  /* copy first name into name*/ 

  for (i = 0; first_name[i] !=’\0’ i++) 

    name[i] = first_name[i]; 

  /* End first_name with a space */ 

     name[i] = ‘ ‘ ; 

  /* Copy second _name into name */ 

  for ( j = 0; second_name[j] != ‘\0’; j++)  

  name [i+j+1] = ‘ ‘; 

  /* End second_name with a space */ 

    name [i+j+1] = ‘  ‘ ; 

  /* copy last_name into name  */ 

  for  ( k= 0 last_name[k] !=’\0’ ; k++) 

   name[i+j+2] = last_name[k]; 

  /* End name with null character */ 

  name [i+j+k+2] = ‘\o’; 

  print (“\n\n”); 

  printf(“%s\n”, name); 

  } 
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Output 

  VISWANATH PRATAP SINGH 

Fig 8.9 Concatenation of strings 

8.7 COMPARISSON OF TWO STRINGS 

Once again, C does not permit the comparison of two strings directly. That is, the 

statements such as  

  if(name1 == name2) 

  if(name == “ABC”) 

are not permitted. It is therefore necessary to compare the two strings to be tested, character by 

character. The comparison is done until there is a mismatch or one of he strings terminates into a 

null character, whichever occurs first. The following segment of a program illustrates this. 

  i = 0; 

  while(str1[i] == str2[i] &&str1[i] != ‘\0’ 

    && str2[i] !=’\0’) 

  i = i+1; 

  if (str1[i] == ‘\0’ && str2[i] == ‘\0’) 

     printf(“strings are equal\n”); 

  else 

      printf(“strings are not equal\n”); 

8.8 STRING-HANDLING FUNCTIONS 

Fortunately, the C library supports large number of string-handling functions that can be 

used to carry out many of the string manipulations discussed so far. Following are the most 

commonly used string-handling functions. 
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Function Action 

strcal() 

strcmp() 

strcpy() 

strlen() 

concatenates two strings 

compares two strings 

copies one string over another 

finds the length of a string 

 

We shall discuss briefly how each of these functions can be used in the processing of strings. 

strcat ( ) function 

The strcat function joins two strings together. It takes the following form: 

   strcat(string1, string2) 

string1 and string2 are character arrays, when the function strcat is executed, string2 is appended 

to string1. It does so by removing the null character at the end of string1 and placing string2 

from there. The string at string2 remains unchanged. For example, consider the following three 

strings. 

  0      1 2 3        4       5       6         7        8      9       0       1 

Part 1 =  

  

 

  0      1 2 3        4       5       6        

Part 2 =    

 

  0      1 2 3        4       5       6        

Part 3 =   

 

 V E R Y         

 G O O D \0   

 B A D \0    
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strcat(part1,part2); will result in: 

  0      1 2 3        4       5       6         7        8      9       0       1 

Part 1 =  

  

  0      1 2 3        4       5       6        

Part 2 =    

While the statement strcat(part1,part3); 

Will result in: 

  0      1 2 3        4       5       6         7        8      9       0       1 

Part 1 =  

  

 

  0      1 2 3        4       5       6        

Part 3 =   

 

We must make sure that the size of string1 (to which string2 is appended) is large enough 

to accommodate the final string. 

 strcat  function may also append a string constant to a string variable. The following is 

valid: 

   strcat(part1, “GOOD”); 

C permits nesting of strcat functions. For example, the statement 

   strcat(strcat(string1, string2), string3); 

is allowed and concatenates all the three strings together. The resultant string is stored in string1. 

 V E R Y  G O O D \0   

 G O O D \0   

 V E R Y  B A D \0    

 B A D \0    
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strcmp( ) function 

The strcmp function compares two strings identified by the arguments and has a value 0 

if they are equal. If they are not, it has the numeric difference between the first no matching 

characters in the strings. It takes the form: 

  strcmp(string1,string2); 

string1 and string2 may be string variables or string constants. Examples are: 

  strcmp(name1, name2); 

  strcmp(name1, “John”); 

  strcmp(“Rom””, “Ram”); 

 Our major concern is to determine whether the strings are equal; if not, which is 

alphabetically above. The value of the mismatch is rarely important. For example, the statement 

  strcmp(“their”, “threre”); 

 Will return a value of -9 which is the numeric difference between ASCII “i” ASCII “i”. 

that is “i” minus “r’ in ASCII code is -9. If the value is negative, string 1 is alphabetically above 

string2. 

strcpy( ) function 

The strcpy function works almost like a string-assignment operator. It takes the form: 

   strcpy(string1,string2) 

and assigns the contents of string2 to string1. String2 may be a character array variable or a 

string constant. For example, the statement 

   strcpy(city, “DELHI”); 

 will assign the string “DELHI” to the string variable city. Similarly, the statement 

   strcpy(city1, city2) 
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will assign the contents of the strings variable city2 to the string variable city1. The size of the 

array city1 should be large enough to receive the contents of city2. 

srtlen( ) function 

This function counts and returns the number of characters in  a string. It takes the form 

   n = strlen(string) 

 where n is an integer variable, which receives the value of the length of the string. The 

argument may be a string constant. The counting ends at the first null character. 

Program 8.9 s1, s2 and s3 are three string variables writhe a program to read ttwo string 

constants into s1 and s2 and compare whether they are equal or not. If they are not, join them 

together. Then copy the contents of s1 to the variable s3 at the end, the program should print the 

contents of all the three variable and their lengths. 

The program is shown in Fig.8.10. During the first run, the input strings are  “New” and 

“York”. These strings are compared by the statement  

  x = strcmp(s1, s2); 

 Since they are not equal they are joined together and copied into s3 using the statement 

   strcpy(s3,s1); 

The program outputs all the three with their lengths.  

During the second run, the two strings s1 and s2 are equal, and therefore, they are not 

joined together in this case al the three strings contain he same string constant “London”. 

Program 8.9 

  #include<string.h> 

main( ) 

            {  
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char s[2], s2[20], s3[20]; 

int x,11, 12 13; 

pritf(“\n\n enter two string constants\n”); 

printf(“?”); 

scanf(“%s 

%s”, s1, s2); 

/* comparing s1 and s2 */ 

x = strcmp(s1, s2); 

if(x  !=0) 

{ 

printf(“\n \n stings are not equal \n”); 

strcat(s1, s2); 

/* joining s1 and s2 */ 

} 

else 

printf(“\n\n strings are not equal \n”); 

/* copying s1 s3*/ 

 strcpy(s3, s1); 

/* finging lenth of strings */ 

11 = strlen(s1); 

12 = strlen(s2); 
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13 = strlen(s3); 

/* out put*. 

printf(“ \n s1 = %s\t length = % characters \n, s1, 11); 

printf(“ \n s2 = %s\t length = % characters \n, s2, 12); 

printf(“ \n s3 = %s\t length = % characters \n, s3, 13); 

} 

Output 

Enter two stringconstants 

? newyork 

Strings are not eaual 

S1 = newyork  length = 7 characters 

S2 = York  legth = 4 characters 

S3 = newyork   length = 7 characters 

 

Enter  two string constants 

? London London 

Strings are \equal 

S1 = London    length = 6 characters 

S2 =London length = 6 characters 

S3 = London length = 6 characters 

Fig .8.10 illustration of string Fig.8.11 shows how to write a C program that reads a string and 

prints if it is a palindrome or not. 



349 

 

Program 

#include<stdio.h> 

#include<conio.h> 

#include<string.h> 

void  main( ) 

{ 

char chk= ‘t’, str[30]; 

int len, left, right; 

printf(“\n enter a string:”); 

scanf(“%s”, &str); 

len= strlen(str); 

left=0; 

right=len-1; 

while(left < right && chk == ‘t’) 

{ 

if(str[left] == str[right]) 

; 

else  

chk=’f’; 

left++; 

right-; 
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} 

if(chk==’t’) 

printf(“\n the string %s is palindrome “, str); 

else  

printf(“\n the string %s is not a palindrome”, str); 

getch(): 

} 

Output 

Enter a string: nitin 

The string nitin is a palindrome 

Fig.8.11 program to check if a string is palindrome or not 

Other string functions 

The header file<string.h> contains many more string manipulation functions.  They might 

be useful in certain situations. 

strncpy 

     In addition to the function strcpy that copies one string to another; we have another 

function strncpy that copies only the lef-most n characters of the source string to the target string 

variable.  This is a three-parameter function and is invoking as follows: 

strncpy(s1, s2, 5); 

This statement copies the first 5 characters of the source string s2 into the target string s1.  Since 

the first 5 characters may not include the terminating null character, we have to place it explicitly 

in the 6th position of s2 as shown below: 

S1[6] = ‘\0’; 



351 

 

Now, the string s1 contains a proper string. 

strncmp 

Variation of the function strcmp is the function strncmp.  This function has three 

parameters as illustrated in the function call below: 

strncmp(s1, s2, n); 

This compares the left-most n characters of s1 to s2 an returns 

(a) 0 if they are equal. 

(b)  Negative number, if s1 sub-string is less than s2; and  

(c) Positive number, otherwise 

strncat  

This is another concatenation function that takes three parameters as shown below: 

strncat (s1, s2, n); 

This call will concatenate the left-most n characters of s2 to the end of s2.  Example: 

s1 

 

s2   

After strncat(s1, s2, 4); execution: 

 

strstr 

It is a two-parameter function that can be used to locate a sub-string in a string.  Htis 

takes he form: 

strstr(s1, s2); 

strstr(s1, ABC); 

B A L A \0        

G U R U S A M Y \0 

B A L A G U R U \0 
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      The function strstr searches the string s1 to see whether the string s2 is contained in s1.  If 

yes, the function returns the position of the first occurrence of the sub-string.  Otherwise, it 

returns a NULL pointer. Example, 

if(strstr(s1, s2) == NULL) 

printf(“substring is not found”); 

else 

printf(“s2 is a substring of s1”); 

we also have function to determine the existence of character in a string.  The function call  

strchr(s1, ‘m’); 

will locate the first occurrence of the character ‘m’ and the call 

strrchr(s1, ‘m’); 

will locate the last occurrence of the character ‘m’ in the string s1. 

WARNING 

● When allocating space of a string during declaration, remember to count the terminating 

null character. 

● When creating an array to hold a copy of a string variable of unknown size, we can 

compute the size required using the expression strlen(string name)+1. 

● When copying or concatenating one string to another, we must ensure that the target 

(destination) string has enough space to hold the incoming characters.  Remember that no 

error message will be available even if this condition is not satisfied.  The copying may 

overwrite the memory and the program may fail in an unpredictable way. 

● When we use strncpy to copy a specific number of characters from a source string, we 

must ensure to append the null character to the target string, in case the number of 

characters is less than or equal to the source string. 
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8.9 TABLE OF STRING 

We often use lists of character string, such as list of the names of students in a class, list 

of the names of employees I an organization, list of places, etc. A list of names can be treated as 

a table of strings and a two-dimensional character array can be used to store the entire list. For 

example, a character array student[30] may be used to store a list of 30 names, each of length not 

more than 15 characters. Shown below is a table of five cities: 

C h A n d i g a R h 

M a D r a s     

A h M e d a b a d  

H y D e r a b a d  

b o M b a y     

  

This table can be conveniently stored in a character array city by using the following declaration: 

  char city[ ]  [ ] 

    { 

    “Chandigarh”,  

    “Madras”, 

    “Ahmedabad”, 

    “Hyderbad”, 

    “Bombay” 

   }; 

To access the name of the ith city in the list ,we write 

   City [I – 1] 
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And therefore city[0] denotes “Chandigarh”, city[1] denotes “madras” and so on. This shows that 

once an array is declared as two-dimensional, it can be used like a one-dimensional array in 

further manipulations. That is, the table can be treated as a column of strings. 

Program 8.11 Write a program that would sort a list of names in alphabetical order. 

A program to sort the list of string in alphabetical order is given in Fig.8.12. it employs 

the method of bubble sorting described in case study 1 in the previous chapter. 

Program 

  #define ITEM 5 

  #define MAXCHAR 20 

  main () 

  { 

   Char string[ITEM] [MAXCHAR], dummy [MAXCHAR] 

   int i = 0, j = 0 

   /* Reading the  list */ 

   printf(“Enter names of %d items /n”, ITEM); 

   while (i < ITEMS) 

    scanf(“%s”, string[i++]); 

   /* sorting begins */ 

   for (i=1, i < ITEMS; i++) /* Outer loop begins */ 

   { 

      for  (j=1; j<= ITEMS-j; j++) /* Inner loop begins*/ 

   { 
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     if (strcmp (string[j-1], string[j]) > 0) 

   {  /* Exchange of contents */ 

   strcpy (dummy, string[j-1]); 

   strcpy (string[j-1], string[j]); 

   strcpy(string[j], dummy); 

          } 

      } /* Innner loop ends */ 

  }   /* Outer loop ends */ 

          /* sorting completed */ 

         printf(“\n Alphabetical list \n\n”); 

          for (i=0; I < ITEMS; i++) 

  printf(“%s”, string[i]); 

  } 

Output 

  Enter names of 5 items 

  London Manchester Delhi Paris Moscow 

  Alphabetical list 

  Delhi  

  London 

  Manchester 

  Moscow 
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  Paris 

  Fig. 8.12 Sorting of strings in alphabetical order  

 Note that a two-dimensional array is used to store the list of strings. Each string is red 

using a scanf function with %s format. Remember, if any string contains a white space, then the 

part of the string after the white space will be treated as another item in the list by the scanf. In 

such cases, we should read the entire line as a string using a suitable algorithm. For example, we 

can use gets function to read line of text containing a series of words. We may also use puts 

function in place of scanf for output. 

8.10 OTHER FEATURES OF STRINGS 

 Other aspects of string we have not discussed in this chapter include: 

 Manipulating strings using pointers 

 Using string as function parameter. 

 Declaring and defining strings as members of structures. 

These topics will be dealt with later when we discuss functions, structures and pointers. 

Just Remember 

 Character constants are enclosed in single quotes and sting constants ae enclosed in 

double quotes. 

 Allocate sufficient space in a character array to hold the null character at the end. 

 Avoid processing single characters as strings. 

 Using the address operator & with a string variable in the scanf function call is an 

error. 

 It is a compile time error to assign a string to a character variable. 

 Using a string variable name on the let of the assignment operator is illegal;. 

 When accessing individual characters in a string variable, it is logical error to access 

outside the array bunds. 

 Strings cannot be manipulated with operators. Use string functions. 
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 Do not use string functions on an array char type that is not terminated with the null 

character. 

 Do not forget to append the null character to the target string when the number of 

characters copied is less than or equal to the source string. 

 Be aware the return values when using the functions strcmp and strncmp for 

comparing strings. 

 When using string functions for copying and concatenating strings, make sure that the 

target string has enough space to store the resulting string. Otherwise memory 

overwriting may occur. 

 The header file<stdio.h> is required when using standard I/O functions. 

 The header file<ctype.h> is required when using character handling functions. 

 The header file<stdlib.h> is required when using general utility functions. 

 The header file<string.h> is required when using string manipulation functions. 

Case Studies 

1. Counting Words in a Text 

One of the practical applications of string manipulations is counting the words in a text. 

We assume that a word is a sequence of any characters, except escape characters and blanks, and 

that two words are separated by one blank character. The algorithm for counting words is as 

follows: 

 1.  Read a line of text. 

 2.  Beginning from the first character n the line, look for a blank. If  a blank is found, 

increment words by 1. 

 3.  Continue steps 1 and 2  until the last line is completed. 

The implementation of this algorithm is shown in Fig.8.13.  The first while loop will be executed 

once for each line of text. The end of text is indicated by pressing the “Return” key an extra time 

after the entire text has been entered. The extra ”Return” key causes a newline character as input 

to the last line and as a result, the last line contains only the null character. 
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 The program checks for this special line using the test 

   if(line[0] ==’\0’) 

and if the first (and only the first) character in the line is a null character, then counting is 

terminated. Note the difference between a null character and a blank character. 

Program 

   #include <stdio.h> 

   main () 

   { 

    char line[81]. Ctr; 

    int i,c, 

     end = 0; 

     characters = 0, 

     words = 0; 

    printf(“KEY IN THE TEXT. \n”); 

    printf(“GIVE NONE SPACE AFTER EACH WORD.\n”); 

    printf(“WHEN COMPLETED, PRESS ‘RETURN’/\n\n”); 

    while ( end == 0) 

    { 

     /* Reading a line of text */ 

     c = 0; 

     while ((str=getchar()) !=’\n’) 
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      line [c++] = ctr; 

     line[c] = ‘\0’; 

     /* counting the words in a line */ 

     if(line[0] ==’\0’) 

        break; 

     else 

     { 

      words++; 

      for(i = 0; line[i] != ‘\0’ i++) 

        if(linne[i] ==’  ‘  ||  line[i] == ‘\t’) 

      words ++; 

      } 

      /* counting lines and characters */ 

      lines = lines +1; 

      characters = characters  + strlen(line); 

      } 

     printf(“\n”); 

     printf(“Number of lines = %d\n”,lines); 

     printf(“Number of words = %d\n”,words);   

                printf(“Number of characters = %d\n”, characters); 

     } 
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Output 

   KEY IN THE TEXT. 

   GIVE ONE SPACE AFTER EACH WORD. 

   WHEN COMPLETED, PRESSS, ‘RETURN’ 

   Admiration is a very short-lived passion. 

   Admiration involves a glorious obliquity of vision. 

    Always we like those who admire us but we do not 

   Like those whom we admire. 

   Fools admire, but men of sense approve. 

   Number of lines = 5 

   Number of words = 36 

   Number of characters =  205 

Fig. 8.13 counting of characters, words and lines in a text 

The program also counts the number of lines read and the total number of characters in the text. 

Remember, the last line containing the null string is not counted. 

After the first while loop is exited, the program prints the results of counting 

2.   Processing of a Customer List 

 Telephone numbers of important customers are recorded as follows: 

  Full name    Telephone number 

      Joseph Louis Lagrange           869245 

      Jean Robert Argand     900823 
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      Carl Freidrich Gauss     806788 

 -----------      ---------- 

 ------------      ----------- 

It is desired to prepare a revised alphabetical list with surname (last name) first, followed by a 

comma and the initials of the first and middle names.  For example,  

Argand, J.R 

 We create a table of strings, each row representing the details of one person, such as 

first_name, middle_name, last_name, and telephone_number. The columns are interchanged as 

required and the list is sorted on the last_name. figure 8.14 shows a program to achieve this. 

Program 

   #define CUSTOMERS 10 

   main () 

   { 

    char  first_name[20][10], second_name[20][10], 

    surname[20][10], name[20][10], 

    telephone[20][10], dummy[20]; 

   int  i,j;  

    printf(“Input names and telephone numbers \n”); 

    printf(“?”); 

    for(i=0; i<CUSTOMERS;  i++) 

    { 
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Scanf(“%s %s %s”, first_name[i], second_name[i], 

surname[i], telephone[i]); 

    /* converting full name to surname with initials */ 

    strcpy(name[i], surname[i]); 

    strcat(name[i], “,”); 

    dummy [0] =  first_name[i][0]; 

    dummy[1] = ‘\0’; 

    strcat (name[i], dummy); 

    strcat(name[i], “,”); 

    dummy[0] = second_name[i][0]; 

    dummy[1] = ‘\0’; 

    strcat(name[i], dummy); 

    } 

    /* Alphabetical ordering of surnames*/ 

    for(i=1; I <= CUSTOMERS -1; i++) 

       for(j = 1; j<= CUSTOMERS-I; j++) 

     if(strcmp (name[j-1], name[j]) > 0) 

    { 

    /* Swaping names */ 

     strcpy(dummy, name[j-1]); 

     strcpy(name[j-1], name[j]); 
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     strcpy(name[j], dummy); 

    

    /* Swaping telephone numbes */ 

    strcpy(dummy, telephone[j-1]); 

    strcpy(telephone[j-1], telephone[j]); 

    strcpy(telephone[j], dummy); 

        } 

        /* printing alphabetical list */ 

   printf(“\nCUSTOMERS LIST IN ALPHABETICAL ORDER \n\n”); 

   for ( i =0; I < CUSTOMERS; i++) 

      printf(“  %-20s\t %-10s\n”,name[i], telephone[i]); 

   } 

Output 

  Input names and telephone numbers 

  ?Gottfried Wilhelm Leibni 711518 

  Joseph Louis Lagrange 869245 

  Jean Robet Argand 900823 

  Carl Freidrich Gauss 806788 

  Simon Denis Poisson 853240 

  Friedrich Wilhelm Bessiel 719731 

  Charles Francois Sturm 222031 
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  George Gabriel Stokes 545454 

  Mohandas Karamchand Gandhi 362718 

  Josian Willard Gibbs 123145 

 CUSTOMERS LIST IN ALPHABETICAL ORDER 

  Argand, J, R       900823 

  Bessel, F,W    719731 

  Gandhi,M.K     362718 

  Gauss, C.F     806788 

  Lagrange,J.L     869245 

  Leibniz,G.W      711518 

  Poisson,S.D       853240 

  Stokes,G.G      545454       

  Sturm,C.F        22031 

Fig 8.14 Program to alphabetize a customer list 

9 USER-DEFINED FUNCTIONS 

9.1 INTRODUCTION 

We have mentioned earlier that one of the strengths of C language is C functions.  They are 

easy to define and use.  We have used functions in every program that we have discussed so far.  

However, they have been primarily limited to three functions, namely, main, printf, and  scanf.  

In this chapter, we shall consider in detail the following: 

 How a function is designed? 

 How a function is integrated into a program? 
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 How two or more functions are put together? and 

 How they communicate with one another? 

     C functions can be classified into two categories, namely, library functions an user-define 

functions.  Main is an example of user- defined functions.  printf and scanf belong to the 

category of library functions. We have also use other library functions such as sqrt, cos, strcat, 

etc.  The main distinction between these two categories is that library functions are not required 

to be written by us whereas a user-defined function has to be developed by the user at  the time 

of writing a program.  However, a user-defined function can later become a part of the C 

program library.  In fact, this is one of the strengths of C language. 

9.2 NEED FOR USER-DEFINED FUNCTIONS 

As pointed out earlier, main is a specially recognized function in C. Every program must 

have a main function to indicate where the program has to begin its execution.  While it is 

possible to code any program utilizing only main function, it leads to a number of problems.  The 

program may become too large and complex and as a result the task of debugging, testing, and 

maintaining becomes difficult.  If a program is divided into functional parts, then each part may 

be independently coded and later combined into a single unit.  These independently coded 

programs are called subprograms that are much easier to understand, and test.  In C, such 

subprograms are referred to as ‘functions’. 

        There are times when certain types of operations or calculations are repeated at many points 

throughout a program.  For instance, we might use the factorial of a number a several points in 

the program.   In such situations, we may repeat the program statements wherever they are 

needed. Another approach is to design a function that can be called and used whenever required. 

This save both time and space. 

     This “division” approach clearly results in a number of advantages. 

1. It facilitates top-down modular programming as shown in Fig.9.1.  in this programming 

style the high level logic of the overall problem is solved first while the details of each 

lower-level function are addressed later. 
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2. The length of a source program can be reduced by using functions at appropriate places.  

This factor is particularly critical with microcomputers where memory space is limited. 

3. It is easy to locate and isolate a faulty function for further investigations. 

4. A function may be use by many other programs.  This means that a C programmer can 

build on what others have already done, instead of starting all over again from scratch. 

 

Main program 

 

Function 

       A  

       Function 

            B  

 

B 1  B2   

 

Fig. 9.1 Top down modular programming using functions 

9.3 A MULTI-FUNCTION PROGRAM 

A function is self-contained block of code of code that performs a particular task.  Once a 

function has been designed and packed, it can be treated as a ‘black box’ that takes some data 

from the main program and returns a value.  The inner details of operation are invisible to the 

rest of the program.  All that the program knows about a function is: what goes in and what 

comes out.  Every C program can be designed using a collection of these black boxes known as 

functions. 

     Consider a set of statements as shown below: 

void main( ) 

{ 

int i; 

      Function  

            C 
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for(i=1; i<40; i++) 

printf(“......”); 

printf(“\n”); 

} 

    The above set of statements defines a function called printline, which could print a line of 

390-character length.  This function can be used in a program as follows: 

void printline(void);  /*declaration*/ 

main( ) 

{ 

printline( ); 

printf(“This illustrates the use of c functions\n”); 

printline( ); 

} 

void printline(void) 

{ 

int i; 

for(i=1; i<=40; i++) 

printf(“...”); 

printf(“\n”); 

} 

This program will print the following output: 
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...........................................................  

This illustrates the use of C functions 

........................................................... 

The above program contains two user-defined functions: 

main( )function 

printline( )function     

 As we know, the program execution always begins with the main function. During 

execution of the main, the first statement encountered is  

printline( ); 

Which indicates that function printline is to be executed.  At this point, the program control is 

transferred to the function printline.  After executing the printline function, which outputs a line 

39 characters length, the control is transferred back to the main.  Now, the execution continues 

at the point where the function call was executed.  After executing the printf statement, the 

control is again transferred to the printline function for printing the line once more. 

     The main function calls the user-defined printline function two times and the library function 

printf once.  We may notice that the printline function itself calls the library function printf 39 

times repeatedly.   

     Any function can call any other function.  In fact, it can call itself.  A ‘called function’ 

can also call another function.  A function can be called more than once.  In fact, this is one of 

the main features of using functions.  Figure 9.2 illustrates the flow of control in a multi-function 

program. Except the starting point, there are no other predetermine relationships, rules of 

precedence, or hierarchies among the functions that make up a complete program.  The functions 

can be placed in any order.  A called function can be placed either before or after the calling 

function.  However, it is the usual practice to put all the called functions at the end.  See the box 

“modular programming”. 
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main ( ) 

{ 

 

function1( ); 

function2( ); 

function3( ); 

} 

 call 

 

 call 

 

 

 

return 

  

function1( ); 

{ 

 

} 

function2( ); 

{ 

function3( ); 

} 
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return 

Fig. 9.2 flow of control in a multi-function program 

Modular programming  

Modular programming is a strategy applied to the design and development of software systems.  

It is defined as organizing a large program into small, independent program segments called 

modules that are separately named and individually called program units.  These modules are 

carefully integrated to become a software system that satisfies the system requirements.  It is 

basically a “divide-and-conquer” approach. 

     Modules are identified and designed such that they can be organized into a top-down 

hierarchical structure (similar to an organization chart).  In C, each module refers to a function 

that is responsible for a single task. 

     Some characteristics of modular programming are: 

1. Each module should do only one thing. 

2. Communication between modules is allowed only by a calling module. 

3. a module can be called by one and only one higher  module. 

4. No communication can take place directly between modules that do not have calling-

called relationship. 

5. All modules are designed as single-entry, single-exit systems using control structures. 

9.4 ELEMENTS OF USER-DEFINED FUNCTION 

We have discussed and used a variety of data types and variables in our programs so far.  

However, declaration and use of these variables were primarily done inside the main function.  

As we mentioned in chapter 4, functions are classified as one of the derived data types in C.  We 

can therefore define functions and use them like any other variables in C programs.  It is 

function3( );                           call 

{ 

} 
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therefore not a surprise to note that there exits some similarities between functions and variables 

in C. 

 Both function names and variable names are considered identifiers and therefore they 

must adhere to the rules for identifiers. 

 Like variables, functions have types (such as int) associated with them. 

 Like variables, function names and their types must be declared and defined before they 

are used in a program. 

In order to make use of a user-defined function, we need to establish three elements that are 

related to functions. 

1. Function definition  

2. Function call. 

3. Function declaration. 

      The function definition is an independent program module that is specially written to 

implement the requirements of the function. In order to use this function we need to invoke it at a 

required place in the program.  This is known as the function call.  The program (or a function) 

that calls the function is referred to as the calling program or calling function.  The calling 

program should declare any function (like declaration of a variable) that is to be used later in the 

program.  This is known as the function declaration or function prototypes. 

9.5 DEFINITION OF FUNCTIONS 

A function definition, also known as function implementation shall include the following 

elements: 

1. function name; 

2. function type; 

3. list of parameters; 

4. local variable declarations; 

5. function statements; and 

6. a return statement. 
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All the six elements are grouped into two parts, namely 

 Function header  (first three elements); and 

 Function body (second three elements). 

a general format of a function definition to implement these two parts is given below: 

function_type function_name(parameter list) 

{ 

local variable declaration; 

executable statement1; 

executable statement2; 

……………………………. 

…………………………… 

return statement; 

} 

     The first line function_type function_name (parameter list) is known as the function header 

and the statements within the opening and closing braces constitute the function body, which is a 

compound statement. 

Function header 

The function header consists of three parts: the function type (also known as return type), 

the function name and formal parameter list.  Note that a semicolon is not used at the end of the 

function header. 

Name and type 

The function type specifies the type of value (like float or double) that the function is expected to 

return to the program calling the function.  If the return type is not explicitly specified, C will 

assume that it is an integer type.  If the function is not returning anything, then we need to 
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specify the return type as void.   Remember, void is one of the fundamental data types in C.  It is 

a good programming practice to code explicitly the return type, even when it is an integer.  The 

value returned is the output produced by the function.  

     The function name is any valid C identifier and therefore must follow the same rules of 

formation as other variable names in C.  The name should be appropriate to the task performed 

by the function.  However, care must be exercised to avoid duplicating library routine names or 

operating system commands.  

Formal parameter list 

The parameter list declares the variables that will receive the data sent by the calling 

program.  They serve as input data to the function to carry out the specified task.  Since they 

represent actual input values, they are often referred to as formal parameter.  These parameters 

can also be used to send values to the calling programs.  This aspect will be covered later when 

we discuss more about functions.  The parameters are also known as arguments. 

      The parameter list contains declaration of variables separated by commas and surrounded 

by parentheses.  Examples: 

float quadratic(int a, int b, int c){………} 

double power (double x, int n) {…} 

float mul (float x, float y) {…..} 

int sum (int a, int b) {…} 

      Remember, there is no semicolon after the closing parenthesis.  Note that the declaration 

of parameter variables cannot be combined.  That is, int sum(int a,b) is illegal. 

      A function need not always receive values from the calling program.  In such cases, 

functions have no formal parameters.  To indicate that the parameter list is empty, we use the 

keyword void between the parentheses as in  

void printline(void) 

{ 
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…………………… 

…………………… 

} 

      This function neither receives any input values nor returns back any value.  Many 

compilers accept an empty set of parentheses, without specifying anything as in  

void printline ( ) 

But, it is a good programming style to use void to indicate a null parameter list. 

Function body 

The function body contains the declarations and statements necessary for performing the 

required task.  The body enclosed in braces, contains three parts, in the order given below: 

1. Local declarations that specify the variables needed by the function.   

2. Function statements that perform the task of the function. 

3.  A return statement that return the value evaluated by the function. 

If a function does not return any value (like the printline function), we can omit the return 

statement. However, note that its return type should be specified as void.  Again, it is nice to 

have a return statement even for void functions. 

     Some examples of typical function definitions are: 

(a) float mul (float x, float y) 

{ 

float result;                  /* local variable */ 

result = x * y;               /* comp8tes the product */ 

return (result);           /* return the result*/ 

} 
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(b) void sum (int a, int b) 

{ 

printf (“sum = %s”, a + b); /* no local variables*/ 

return;                                  /* optional*/ 

} 

(c ) void display (void) 

{                                                 /* no local variables*/ 

printf(“ no type, no parameters”); /* no return statement*/ 

} 

Note : 

1. When a function reaches its return statement, the control is transferred back to the calling 

program.  In the absence of a return statement, the closing brace acts as a void return. 

2. A local variable is a variable that is defined inside a function and used without having 

any rote in the communication between functions. 

9.6 RETURN VALUES AND THEIR TYPES 

As pointed out earlier, a function may or may not send back any value to the calling 

function.  If it does, it is done through the return statement.  While it is possible to pass to the 

called function any number of values, the called function can only return one value per call, at 

the most. 

     The return statement can take one of the following forms: 

return; 

or  

return(expression); 
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      The first, the ‘plain’ return does not return any value; it acts much as the closing brace of 

the function.  When a return is encountered, the control is immediately passed back to the calling 

function.  An example of the use of a simple return is as follows: 

if(error); 

return; 

Note:  

      In C99, if a function is specified as returning a value, the return must have value 

associated with it. The second form of return with an expression returns the value of the 

expression.  For example, the function  

int mul (int x, int y) 

{ 

int p; 

p = x*y; 

return(p); 

} 

returns the value of p which is the product of the values of x and y.  The last two statements can 

be combined into one statement as follows: 

return (x*y); 

      A function may have more than one return statement.  This situation arises when the 

value returned is based on certain conditions.  For example: 

if( x<= o ) 

return (0); 

else  
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return(1); 

      What type of data does a function return? All functions by default return int type data.  

But what happens if a function must return some other type? We can force a function to return a 

particular type of data by using a type specifier in the function header as discussed earlier. 

      When a value is returned, it is automatically cast to the functions’ type.  In functions that 

do computations using doubles, yet return ints, the returned value will be truncated to an integer.  

For instance, the function 

int product (void) 

{ 

return (2.5 * 3.0); 

}  Will return the value 7, only the integer part of the result. 

9.7 FUNCTION CALLS 

A function can be called by simply using the function name followed by a list of actual 

parameters (or arguments), if any, enclosed in parentheses.  Example: 

main( ) 

{ 

int y; 

y = mul(10,5);   /*function call*/ 

printf(“%d\n”, y); 

} 

     When the compiler encounters a function call, the control is transferred to the function mul().  

This function is then executed line by line as described and a value is returned when a return 

statement is encountered.  This value is assigned to y.  this is illustrated below: 

main( ) 
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{ 

int y; 

y = mul(10,5); /*in call*/ 

…………….. 

} 

 

 

  

 

 

 

 

 

The function call sends two integer values 10 and 5 to the function. 

int mul (int x, int y) 

which are assigned to x and y respectively.  The function computes the product x and y, assigns 

the result to the local variable p, and then returns the value 25 to the main where it is assigned to 

y again.   

      There are many different ways to call a function.  Listed below are some of the ways the 

function mul can be invoked. 

mul(10,5)  

mul(m,5) 

 

int mul (int x, int y) 

{ 

int p;   /*local variable*/ 

p = x*y;   /* x= 10, y=5*/ 

return(p); 

} 
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mul(10,n) 

mul(m,n) 

mul(m+5,10) 

mul(10, mul(m,n)) 

mul(expression1, expression2) 

     Note that the sixth call uses its own call as its one of the parameters.  When we use 

expressions, they should be evaluated to single values that can be passed as actual parameters. 

      A function which returns a value can be used in expression like any other variable.  Each 

of the following statements is valid: 

printf(“%d\n”, mul(p,q)); 

y = mul(p,q) / (p+q); 

if (mul(m,n)>total) printf(“large”); 

However, a function cannot be used on the right side of an assignment statement.  For instance, 

mul(a,b) = 15; 

is invalid. 

       A function that does not return any value may not be used in expressions; but can be 

called in to perform certain tasks specified in the function.  The function printline( ) discussed in 

section 9.3 belongs to this category.  Such functions may be called in by simply stating their 

names as independent statements. 

main ( ) 

{ 

printline( ); 

} 
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Note the presence of a semicolon at the end. 

Function call  

A function call is a postfix expression.  The operator (. .) is at a very high level of 

precedence. (See table 3.8) therefore, when a function call is used as a part of an expression, it 

will be evaluated first, unless parentheses are used to change the order of precedence. 

      In a function call, the function name is the operand and the parentheses set (. .) which 

contains  the actual parameters is the operator.  The actual parameters must match the function’s 

formal parameters in type, order and number. Multiple actual parameters must be separated by 

commas. 

Note: 

1. If the actual parameters are more than the formal parameters, the extra actual arguments 

will be discarded. 

2. On the other hand, if the actual are less than the formals, the unmatched formal 

arguments will be initialized to some garbage. 

3. Any mismatch in data types may also result in some garbage values. 

9.8 FUNCTION DECLARATION 

Like variables, all functions in a C program must be declared, before they are invoked.  A 

function declaration (also known as function prototype) consists of four parts. 

 Function type(return type)  

 Function name. 

 Parameter list. 

 Terminating semicolon. 

They are coded in the following format: 

Function-type function-name(parameter list); 

This is very similar to the function header line except the terminating semicolon.  For example, 

mul function defined in the previous section will be declared as: 

 Int mul(int m, int n);   /* Function prototype*/ 
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Points to note 

1) The parameter list must be separated by commas. 

2) The parameter names do not need to be the same in prototype declaration and the 

function definition. 

3) The types must match the types of parameters in the function definition, in number and 

order. 

4) Use of parameter names in the declaration is optional. 

5) If the function has no formal parameters, the list is written as(void). 

6) The return type is optional, when the function returns int type data. 

7) The retype must be void if no value is returned. 

8) When the declared types do not match with the types in the function definition, compiler 

will produce an error. 

Equally acceptable forms of declaration of mul function are: 

int mul (int, int); 

      mul (int a, int b); 

       mul (int, int); 

When a function does not take any parameters and does not return any value, its prototype is 

written as: 

void display (void); 

A prototype declaration may be placed in two places in a program. 

1. Above all the functions (including main). 

2. Inside a function definition. 

When we place the declaration above all the function (in the global declaration section), the 

prototype is referred to as a global prototype.  Such declarations are available for all the function 

in the program. 
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      When we place it in a function definition (in the local declaration section), the prototype 

is called a local prototype. Such declarations are primarily used by the functions containing 

them. 

The place of declaration of a function defines a region in a program in which the function 

may be used by other functions.  This region is known as the scope of the function.  (Scope is 

discussed later in this chapter.) It is a good programming style to declare prototypes in the global 

declaration section before main.  It adds flexibility, provides an excellent quick reference to the 

functions used in the program, and enhances documentation. 

Prototypes: yes or no 

Prototype declaration is not essential.  If a function has not been declared before it is used, C will 

assume that its details available at the time of linking.  Since the prototype is not available, C 

will assume that the return type is an integer and that the types of parameters match the formal 

definitions.  If these assumptions are wrong, the linker will fail and we will have to change the 

program.  The moral is that we must always include prototype declarations, preferably in global 

declaration section. 

Parameters Everywhere! 

Parameters (also known as arguments) are used in three places: 

1. in declaration(prototypes) 

2. in function call, and 

3. in function definition. 

The parameters used in prototypes and function definitions are called formal parameters and 

those used in function calls are called actual parameters.  Actual parameters used in a calling 

statement may be simple constants, variables or expressions. 

     The formal and actual parameters must match exactly in type, order and number.  Their 

names, however, do not need to match. 
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9.9 CATEGORY OF FUNCTIONS 

A function, depending on whether arguments are present or not and whether a value is 

returned or not, may belong to one of the following categories: 

Category 1: functions with no arguments and no return values. 

Category 2: functions with arguments and no return value. 

Category 3: functions with arguments and one return value. 

Category 4: functions with no arguments and but a return value. 

Category 5: functions that return multiple values. 

     In section to follow, we shall discuss these categories with examples.  Not that, from now on, 

we shall the term arguments (rather than parameters) more frequently. 

9.10 NO ARGUMENTS AND NO RETURN VALUES 

When a function has no arguments, it does not receive any data from the calling function.  

Similarly, when it does not return a value, the calling function does not receive any data from the 

called function.  In effect, there is no data transfer between the calling function and the called 

function.  This is depicted in Fig.9.3.  The dotted indicate that there is only a transfer of control 

but not data. 

function 1( ) 

{ 

…………………… 

function 2( )                    

…………………… 

} 

   Control 

No input 

 

 

No output 

function 2 ( ) 

{ 

……………………… 

…………………….. 

…………………….. 

} 

 

Fig.9.3. No data communication between function. 
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As pointed out earlier, a function that does not return any value cannot be used in an expression.  

It can only be used as an independent statement. 

Program9.1 Write a program with multiple functions that do not communicate any data between 

them. 

A program with three user-defined functions is given in Fig.9.4 main is the calling 

function that calls printline and value functions.  Since both the called functions contain no 

arguments, there are no argument declarations.  The printline function, when encountered, prints 

a line with a length of 35 characters as prescribed in the function. The value function calculates 

the value of the principal amount after certain period of years and prints the results.  The 

following eq2uation is evaluated repeatedly: 

value = principal(1+interest-rate) 

program 

/* function declaration*/ 

void printline (void); 

void value( void); 

main ( ) 

{ 

printline(); 

value (); 

printline( ); 

} 

/* function: printline( )*/ 

void printline(void)    /*contains no arguments*/ 



385 

 

{ 

int i; 

for(i=1; i <= 35; i++) 

printf(“%c”, ‘_’); 

printf(“\n”); 

} 

/* function2: value( )*/ 

void value(void) /*contains no arguments*/ 

{ 

int year, period; 

float inrate, sum, principal; 

printf(“principal amount?”); 

scanf(“%f”, &principal); 

printf(“interest rate? “); 

scanf(“%f”, &inrate); 

printf(“period? “); 

scanf(“%d”, &period); 

sum = principal; 

year = 1; 

while(year <= period) 

{ 
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sum = sum * (1+inrate); 

year = year +1; 

} 

printf(“\n%8.2f  %5d %12.2f\n”, principal, inrate, period,sum); 

} 

Output 

principal amount? 5000 

interest rate? 0.12 

period? 5 

 

5000.0  0.12  5  8811.71 

Fig.9.4 Function with no arguments and no return values 

      It is important to note that the function value receives its data directly from the terminal. 

The input data include principal amount, interest rate and the period for which the final value is 

to be calculated.  The while loop calculates the final value and the results are printed by the 

library function printf.  When the closing brace of value ( ) is reached, the control is transferred 

back to the calling function main.  Since everything is done by the value itself there is in fact 

nothing left to be sent back to the called function.  Return types of both printline and value are 

declared as void. 

     Note that no return statement is employed.  When there is nothing to be returned, the 

return statement is optional.  The closing brace of the function signals the end of the execution of 

the function, thus returning the control, back to the calling function. 
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9.11 ARGUMENTS BUT NO RETURN VALUES 

In Fig.9.4 the main function has no control over the way the functions receive input data.  

For example, the function printline will print the same line each time it is called.  Same is the 

case with the function value.  We could make the calling function to read data from the terminal 

and pass it on to the called function.  This approach seems to be wiser because the calling 

function can check for the validity of data, if necessary, before it is handed over to the called 

function. 

      The nature of data communication between the calling function and the called function 

with arguments but no return values is shown in Fig.9.5 

Function 1( ) 

{ 

…………………… 

Function 2(a)                   

…………………… 

} 

   Value of 

arguments 

 

 

No return 

value 

Function 2 (f ) 

{ 

……………………… 

…………………….. 

…………………….. 

} 

 

Fig.9.5 One-way data communication 

We shall modify the definition of both the called functions to include arguments as follows: 

void printline(char ch) 

void value(float p, float r, int n) 

      The arguments ch, p, r and n are called the formal arguments.  The calling function can 

now send values to these argumenst using function calls containing appropriate arguments.  For 

example, the function call 

value(500.0.12,5) 
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Would send the values 500,0.12,and 5 to the function 

void value(float p, float r, int n) 

and assign 500 to p, 0.12 to r and 5 to n.  the values 500,0.12, and 5 are the actual arguments, 

which become the values of the formal arguments inside the called function. 

     The actual and formal arguments should match in number, type, and orgfer.  The values of 

actual arguments are assigned to the formal arguments on a one to one basis, starting with the 

first argument as shown in Fig.9.6 

 

 

 

 

Function call 

 

 

 

 

Called function 

 

Fig.9.6 Arguments matching between the function call and called function 

 

main( ) 

{ 

………………actual arguments 

function1 (a1,a2,a3,…..,am) 

……………………. 

}      

function1 (f1,f2,f3,………...fn) 

                    formal arguments 

{ 

…………………………… 

} 
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      We should ensure that function call has matching arguments.  In case, the actual 

arguments are more than the formal arguments,(m>n), the extra actual arguments are discarded.  

On the other hand, if the actual argument are less than the formal arguments.  The unmatched 

formal arguments are initialized to some garbage values.  Any mismatch in data type may also 

result in passing of garbage values.  Remember, no error message will he generated. 

      While the formal arguments must be valid variable names, the actual arguments may be 

variable names, expressions, or constants.  The variables used in actual arguments must be 

assigned values before the function call is made. 

Remember that, when a function call is made, only a copy of the values of actual arguments is 

passed into the called function.  What occurs inside the function will have no effect on the 

variables used in the actual argument list. 

Program9.2 Modify the program of program 9.1 to include the arguments in the function calls 

The modified program with function arguments is presented in Fig.9.7. Most of the 

program is identical to the program in Fig.9.4.  The input prompt and scanf assignment statement 

have been moved from value function to main.  The variables principal, inrate, and period are 

declared in main because they are used in main to receive data.  The function call 

value(principal, inrate, period); 

Passes information it contains to the function value. 

      The function header of value has three formal arguments p,r and n which correspond to 

the actual arguments in the function call, namely, principal, inrate, and period.  On execution 

of the function call, the values of the actual arguments are assigned to the corresponding formal 

arguments.  In fact, the following assignments are accomplished across the function boundaries: 

p=principal; 

r=inrate; 

n= period; 

Program 
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/*prototype*/ 

void printline(char c); 

void value(float, float, int); 

main( ) 

{  

float principal, inrate; 

int period; 

printf(“Enter principal amount, interest”); 

printf(“rate, and period\n”); 

scanf(“%f %f %d”, &principal, &inrate, &period); 

printline(‘z’); 

value(principal,inrate,period); 

printline(‘c’); 

} 

void printline(char ch) 

{ 

int i; 

for(i=1; i <= 52; i++) 

printf(“%c”, ch); 

printf(“\n”); 

} 



391 

 

void value (float p, float r, int n) 

{ 

int year; 

float sum; 

sum = p; 

year = 1; 

while(year <= n) 

{ 

sum = sum * (1+r); 

year = year +1; 

} 

printf(“%f\t%f\t%d\t%f\n”,p,r,n,sum); 

} 

Output 

Enter principal amount, interest rate, and period 

5000 0.12 5 

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz 

5000.000000 0.120000 5 8811.708984 

ccccccccccccccccccccccccccccccccccccccccccccccc 

Fig 9.7 Functions with arguments but no return values 
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      The variables declared inside a function are known as local variables and therefore their 

values are local to the function and cannot be accessed by any other function.  We shall discuss 

more about this later in the chapter. 

      The function value calculates the final amount for a given period and prints the results as 

before.  Control is transferred back on reaching the closing brace of the function.  Note that the 

function does not return any value. 

      The function printline is called twice.  The first call passes the character ‘z’, while the 

second passes the character ‘C’ to the function.  These are assigned to the formal argument ch 

for printing lines (see the output). 

Variable number of arguments 

Some functions have a variable number of arguments and data types which cannot be known at 

compile time.  The printf and scanf functions are typical examples.  The ANSI standard proposes 

new symbol called the ellipsis to handle such function.   The ellipsis consists of three periods (..) 

and used as shown below: 

double area(float d,….) 

Both the function declaration and definition should use ellipsis to indicate that the arguments are 

arbitrary both in number and types. 

9.12 ARGUMENTS WITH RETURN VALUES 

The function value in Fig.9.7 receives data from the calling function through arguments, but 

does not send back any value.  Rather, it displays the results of calculations at the terminal.  

However, we may not always wish to have the result of a function displayed.  We may use it in 

the calling function for further processing.  Moreover, to assure a high degree of portability 

between programs, a function should generally be coded without involving any I/O, for example, 

different programs may require different output formats for display of results.  These 

shortcomings can be overcome by handing over the result of a function to its calling where the 

returned value can be used as required by the program. 
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      A self-contained and independent function should behave like a ‘black box’ that receives 

a predefined form of input and outputs desired values.  Such function will have two-way data 

communication as shown in Fig.9.8. 

 

function 1( ) 

{ 

…………………… 

function 2(a)                    

…………………… 

} 

   value of 

arguments 

 

 

function 

result 

function 2 (f ) 

{ 

……………………… 

…………………….. 

return(e) 

} 

Fig.9.8 Two-way communication between functions 

     We shall modify the program in fig 9.7 illustrate the use of two-way data communication 

between the calling and the called functions. 

Program9.3 In the program presented in Fig.9.7 modify function value, to return the final 

amount calculated to the main, which will display the required output at the terminal.  Also 

extend the versatility of the function printline by having it to take the length of the line as an 

argument. 

The modified program with the proposed changes is presented in Fig.9.9. one major change is 

the movement of the printf statement from value to main. 

Program 

void printline(char ch, int len); 

value(float, float, int); 

main( ) 
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{ 

float principal, inrate, amount; 

int period; 

printf(“Enter principal amount, interest”); 

printf(“rate, and period\n”); 

scanf(%f %f %d, &principal, &inrate, &period); 

printline(‘*’, 52); 

amount = value(principal,inrate, period); 

printf(“\n%f\t%f\t%d\t%f\n\n”, principal, inrate, period, amount); 

printline(‘=’,52); 

} 

void printline(char ch, int len) 

{ 

int i; 

for(i=1;i<=len;i++) 

printf(“%c”,ch); 

printf(“\n”); 

} 

value(float p, float r, int n)/*default return type*/ 

{ 

int year; 
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float sum; 

sum = p; year =1; 

while(year <= n) 

{ 

sum = sum * (1+r); 

year = year +1; 

} 

return(sum); /  *returns int part of sum*/ 

} 

Output 

Enter principal amount, interest rate, and period 

5000  0.12  5 

 

5000.000000  0.120000   5  8811.000000 

Fig .9.9 Function with arguments and return values 

     The calculated value is passed on to main through statement; 

return(sum); 

Since, by default, the return type of value function is int, the integer value of sum at this 

point is returned to main and assigned to the variable amount by the functional call 

amount =  value(principal, inrate, period); 

the following events occur, in order, when the above function call is executed: 
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1. The function call transfers the control along with copies of the values of the actual 

arguments to the function value where the formal arguments p,r, and n are assigned the actual 

values of principal, inrate and period respectively. 

2. The called function value is executed line by line in a normal fashion until the 

return(sum); statement is encountered.  At this point, the integer value of sum is passed back 

to the function-call in the main and the following indirect assignment occurs: 

value(principal, inrate, period) = sum; 

3.  The calling statement is executed normally and the returned value is thus assigned to 

amount, a float variable. 

4.  Since amount is a float variable, the returned integer part of sum is converted to floating-

point value.  See the output. 

Another important change is the inclusion of second argument to printline function to 

receive the value of length of the line from the calling function.  Thus, the function call 

printline(‘*’, 52); 

Will transfer the control to the function printline and assign the following values to 

formal arguments ch and len; 

ch = ‘*’; 

len = 52; 

Returning float values 

We mentioned earlier that a C function returns a value of the type int as the default case 

when no other type is specified explicitly.  For example, the function value of program 9.3 does 

all calculations using floats but the return statement 

return(sum); 

returns only the integer part of sum. This due to the absence of the type-specifier in the function 

header.  In this case, we can accept the integer value of sum because the truncated decimal part is 

insignificant compared to the integer part.  However, there will be times when we may find it 
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necessary to receive the float or double type of data.  For example, a function that calculates the 

mean or standard deviation of a set of values should return the function value in either float or 

double. 

      In all such cases, we must explicitly specify the return type in both the function definition 

and the prototype declaration. 

      If we have a mismatch between the type of data that the called functions returns and the 

type of data that the calling function expects, we will have unpredictable results.  We must, 

therefore, be very careful to make sure that both types are compatible. 

Program9.4 The program in fig.9.10 shows how to write a C program (float x[], int n) that 

returns the position of the first minimum value among the first n elements of the given array x. 

Program 

#include<stdio.h> 

#include<conio.h> 

#include<stdio.h> 

int minpos(float [], int); 

void main( ) 

{ 

int n: 

float x[10] = {12.5, 3.0, 45.1, 8.2, 19.3, 1.0, 7.8, 23.7, 29.9, 5.2}; 

printf(“Enter the value of n:”); 

scanf(“%d”, &n); 

if(n>=1 && n<=10) 

: 
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else  

{ 

printf(“invalid value of n……press any key to terminate the 

program….”); 

getch(): 

exit(0); 

} 

printf(“within the first %d elements of array, the first minimum value is 

stored at index %d”, n, minpos(x,n)); 

getch(): 

} 

int minpos(float a[],int n) 

{ 

int i.index; 

float min-9999.99; 

for(i=0;i<n;i++) 

if(a[i]<min) 

{ 

min-a[i]; 

index = i; 

} 

return(index); 
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}  

Output 

Enter the value of n: 5  

Within the first 5 elements of array, the first minimum value is stored at index 1 

Fig.9.10 Program to return the position of the first minimum value in an array 

Program9.5 write a function power that computes x rose to the power y for integers x and y and 

returns double-type value. 

Fig.9.11 shows a power function that returns a double, the prototype declaration  

double power(int, int); 

appears in main, before power is called. 

Program 

main( ) 

{ 

int x,y; 

double power(int, int);  /*prototype declaration*/ 

printf(“enter x,y:”); 

scanf(“%d %d”, &x,&y); 

printf(“%d to power %d is %f\n”, x,y,power(x,y)); 

} 

double power(int x, int y); 

{ 
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double p; 

p = 1.0; /*x to power zero*/ 

if(y>=0) 

while(y--) /*computes positive powers */ 

p *= x; 

else  

while (y++) /*computes negative powers*/ 

p /= x; 

return(p);  /*returns double type*/ 

} 

Output 

Enter x,y:  16  2 

16 to power to 2 is 256.000000 

Enter x,y:  16 -2 

16 to power -2 is 0.003906 

Fig. 9.11 Power functions illustration return of float values 

Another way to guarantee that power’s type is declared before it is called in main is to define the 

power function before we define main.  Power’s type is then known from its definition.  So we 

no longer need its type declaration in main. 

9.13 NO ARGUMENTS BUT RETURNS A VALUE 

There could be occasions where we may need to design function that may not take any 

arguments but returns a value to the calling function.  A typical example is the getchar function 

declared in the header file<stdio.h> we have used this function earlier in a number of places.  
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The getchar function has no parameters but it returns an integer type data that represents a 

character. 

We can design similar functions and use in our programs. Example: 

int get_number(void); 

main 

{ 

int m = get_number( ); 

printf(“%d”, m); 

} 

int get_number(void) 

{ 

int number; 

scanf(“%d”, &number); 

return(number); 

} 

 

9.14 FUNCTION THAT RETURNS MULTIPLE VALUES 

Up till now, we have illustrated functions that return just one value using a return 

statement. That is because; a return statement can return only one value.  Suppose, however, that 

we want o get more information from a function.  We can achieve this in C using arguments not 

only to receive information but also to send back information to the calling function.  The 

arguments that are used to “send out” information are output parameters.   
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     The mechanism of sending back information through arguments is achieve using what are 

known as the address operator (&) and indirection operator (*).  Let us consider an example to 

illustrate this. 

void mathoperation(int x, int y, int *s,int *d); 

main() 

{ 

int x = 20, y = 10, s, d; 

mathoperation(x,y, &s, &d); 

printf(“s=%d\n”, s,d); 

} 

 

void mathoperation (int a, int b, int *sum, int *diff); 

{ 

*sum = a+b; 

*diff = a-b; 

} 

      The actual arguments x and y are input arguments, s and d are output arguments.  In the 

function call, while e pass the actual values of x and y to the function, we pass the addresses of 

locations where the values of s and d are stored in the memory.  (That is why the operator & is 

called the address operator) when the function is called the following assignments occur. 

value of x to a 

value of y to b 

address of s to sum 
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address of d to diff 

Note that indirection operator * in the declaration of sum and diff in the header indicates these 

variables are to store addresses, not actual values of variables.  Now the variables sum and diff 

point to the memory locations of s and d respectively. 

      (The operator* is known as indirection operator because it gives an indirect reference a 

variable through its address.) 

     In the body of the function, we have two statements; 

*sum = a+b; 

*diff = a-b; 

The first one adds the values a and b and the result is stored in the memory location pointed to 

by sum.  Remember, this memory location is the same as the memory location of s.  Therefore, 

the value is stored in the location pointed to by sum is the value of s. 

     Similarly, the value of a-b is store in the location pointed to by diff, which is the same as 

the location d.  After the function call is implemented, the value of s is a+b and the value of d is 

a-b.  Out will be: 

s = 30; 

d = 10; 

      The variables *sum and *diff are known as pointers and sum and diff as pointer 

variables.  Since they are declared as int, they can point to locations of int type data. 

      The use of pointer variables as actual parameters for communicating data between 

function is called “pass by pointers” or “call by address or reference”.  Pointers and their 

applications are discussed in detail in chapter 11. 

Rules for pass by pointers 

1. The types of the actual and formal arguments must be same. 
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2. The actual arguments (in the function call) must be addresses of variables that are local to 

the calling function. 

3. The formal arguments in the function header must be prefixed by the indirection 

operator*. 

4. In the prototype, the arguments must be prefixed by the symbol *. 

5. To access the value of  an actual argument in the called function, we must use the 

corresponding formal argument prefixed with the indirection operator *. 

9.15 NESTING OF FUNCTIONS 

C PERMITS NESTING OF functions freely. main can call funcion1, which calls 

function2,which calls function3, ............and so one.  There is in principle no limit as to how 

deeply functions can be nested.   

Consider the following program: 

float ratio (int x, int y, int z); 

int difference (int x, int y); 

main( ) 

{ 

int  a,b,c; 

scanf(“%d %d %”, &a,&b, &c); 

printf(“%f \n”, ratio(a,b,c)); 

} 

float ratio (int x, int y, int z) 

{ 

if(difference(y,z)) 

return(x/(y-z)); 
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else  

return(0.0); 

} 

int difference(int p, int q) 

{ 

if(p != q) 

return(1); 

else  

return(0); 

} 

The above program calculates the ratio 

a/b-c 

and prints the result.  We have the following three functions: 

main() 

ratio() 

difference() 

main reds the value of a, b, and c calls the function ratio to calculate the value a/(b-c).  This 

ratio cannot be evaluated if (b-c) = 0.  Therefore, ratio calls another function difference to test 

whether the difference (b-c) is zero or no; difference returns 1, if b is not equal to c; 

Otherwise returns zero to the function ratio.  In turn, ratio calculates the value a/(b-c)if it receives 

1 and returns the result in float. In case, ratio receives zero from difference, it sends back 0.0 to 

main indicating that (b-c) =0. 
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      Nesting of function calls is also possible.  For example, statement likes  

p= mul(mul(5,2),6); 

is valid.  This represents two sequential function calls.  The inner function call is evaluated first 

and he returned value is again used as an actual argument in the outer function call.  If mul 

returns the product of its arguments, then the value of p would be 60(=5*2*6). 

Note that he nesting does not mean defining one function within another.  Doing this is illegal. 

9.16 RECURSION 

When a called function in turn calls another function a process of ‘chaining’ occurs.  

Recursion is a special case of this process, where a function calls itself.  A very simple example 

of recursion is presented below: 

main() 

{ 

printf(“this is an example of recursion\n”) 

main(); 

} 

When executed, this program will produce an output something like this: 

This is an example of recursion 

This is an example of recursion 

This is an example of recursion 

This is an ex 

Execution is terminated abruptly; otherwise the execution will continue indefinitely. 

Another useful example of recursion is the evaluation of factorials of a given number.  The 

factorial of a number n is expressed as a series of repetitive multiplications as shown below: 
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factorial of n= n(n-1)(n-2)...............1 

For example,   factorial of 4 = 4*3*2*1=24 

A function to evaluate factorial of n is as follows: 

int factorial (int n) 

{ 

int fact; 

if(n==1) 

return(1); 

else  

fact = n*factorial(n-1);         

return(fact); 

} 

Let us see how the recursion works.  Assume n= 3 since the value of n is not 1, the statement  

fact = n * factorial(n-1); 

will be executed with n = 3 that is  

fact = 3*factorial(2); 

will be evaluated.  The expression on the right-hand side includes a call o factorial with n =2 

This call will return the following value: 

2*factorial(1) 

     Once again.  Factorial is called with n = 1.  This time, the function returns 1.  The sequence of 

operations can be summarized as follows: 

Fact =3*factorial(2) 
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        = 3*2*factorial(1) 

        =3*2*1 

        =6 

      Recursive functions can be effectively used to solve problems where solution is 

expressed in terms of successively applying the same solution to subsets of the problem. When 

we write recursive functions, we must have an if statement somewhere to force the function to 

return without the recursive call being executed.  Otherwise the function will never return. 

9.17PASSING ARRAYS TO FUNCTIONS 

ONE-DIMENSIONAL ARRAYS 

Like the values of simple variables, it is also possible to pass the values of an array to a 

function.  To pass a one-dimensional an array to a called function, it is sufficient to list the name 

to the array, without any subscripts, and the size of the array as arguments.  For example, the call 

largest(a,n) 

Will pass the whole array a to the called function.  The called function expecting this call must 

be appropriately defined.  The largest function header might look like: 

float largest(float array[], int size) 

      The function largest is defined to take two arguments, the array name and the size of the 

array to specify the number of elements in the array.  The declaration of the formal argument 

array is made as follows: 

float array[]; 

     The pair of brackets informs the compiler that the argument array is an array of numbers.  

It is not necessary to specify the size of the array here. 

      Let us consider a problem of finding the largest value in an array of elements. The 

program is as follows: 

main()  
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{ 

float largest (float a[ ],int n); 

float value[4] = {2.5.-4.75,1.2,3.67}; 

printf(“%f\n”, largest(value,4)); 

} 

float largest(float  a[], int n) 

{ 

int i; 

float max; 

max = a[0]; 

for(i =1; i < n; i++) 

if(max < a[i]) 

max = a[i]; 

return(max); 

} 

      When the function call largest (value 4) is made, the values of all elements of array value 

become the corresponding elements of array a in the called function.  The largest function finds 

the largest value in the array and returns the result to the main. 

      In C, the name of the array represents the address of its first element.  By passing the 

array name, we are in fact, passing the address of the array to the called function.  The array in 

the called function now refers to the same array store in the memory.  Therefore, any changes in 

the array in the called function will be reflected in the original array. 
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  Passing addresses of p0arameters to the function is referred to as pass by address (or pass by 

pointers).  Note that we cannot pass a whole array by value as we did in the case of ordinary 

variables. 

Program 9.6 Write a program to calculate the standard deviation of an array of values.  The 

array elements are read from the terminal.  Use function to calculate standard deviation and 

mean. 

Standard deviation of asset of n values is given by  

S.D=√ଵ𝑛 ∑ ሺݔ − 𝑛௜=ଵ݅ݔ )2 

where ݔ is the mean of the values. 

Program 

#include<math.h> 

#define size 5 

float std_dev(float a[], int n); 

float mean(float a[], int n); 

main() 

{ 

float value[size]; 

int i; 

printf(“enter %d float values\n”, size); 

for(i=0; i < size; i++) 

scanf(“%f, &value[i]); 

printf(“std.deviation is %f\n”, std_dev(value, size)); 
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}  

float std_dev(float a[], int n) 

{ 

int i; 

float x, sum = 0.0; 

x = mean(a,n); 

for(i=0; i < n; i++); 

sum += (x-a[i]); 

return(sqrt(sum/(float)n)); 

} 

float mean(float a[], int n) 

{ 

int i; 

float sum = 0.0; 

for(i=0; i<n. i++) 

sum = sum + a[i]; 

return(sum/(float)n); 

} 

Output 

Enter 5 float values 

35.0  67.0  79.5  14.20  55.75 
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Std.deviation is 23.231582 

Fig.9.12 passing of arrays to a function 

    A multifunction program consisting of main, std_dev, and mean function is shown in 

fig.9.12.  main reads the elements of the array value from the terminal an calls the function 

std_dev to print the standard deviation of the array elements. std_dev, in turn, calls another 

function mean to supply the average value of the array elements. 

    Both std_dev and mean are defined as floats and therefore they are declared as floats in the 

global section of the program. 

Three rules to pass an array to function 

1. The function must be called by passing only the name of the array. 

2. In the function definition, the formal parameter must be an array type; the size of the 

array does not need to be specified. 

3. The function prototype must show that the argument is an array. 

     When dealing with array arguments, we should remember one major distinction.  If a function 

changes the values of the elements of an array, then these changes will be made too the original 

array that passed to the function.  When an entire array is passed as an argument, the contents of 

the array are not copied into the formal parameter array; instead, information about the addresses 

of array elements is passed on to the function.  Therefore, any changes introduced to the array 

elements are truly reflected in the original array in the calling function.  However, this does not 

apply when an individual element is passed on as argument.  Program 9.6 highlights these 

concepts. 

Program 9.7 writes a program that uses a function to sort an array of integers. 

A program to sort an array of integers using the function sort () is given in fig.9.13.  its output 

clearly shows that a function can change the values in an array passed as an argument. 

Program 

void sort(int m, int x[ ]); 
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main() 

{ 

int i; 

int marks[5] = {40, 90,73,81, 35}; 

printf(“Marks before sorting\n”); 

for(i = 0; i < 5; i++) 

printf(“%d”, marks[i]); 

printf(“\n\n”); 

sort(5, marks); 

printf(“marks after sorting\n”); 

for(i = 0; i < 5; i++) 

printf(“%4d”, marks[i]); 

printf(“\n”); 

} 

void sort(int m, int x[]) 

{ 

int i, j, t; 

for(i = 1; i <= m-1;  i++) 

for(j = 1; j <= m-i;  j++) 

if(x[j-1] >= x[j]) 

{ 
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t = x[j-1]; 

x[j-1] =x[i]; 

x[j] = t; 

} 

} 

Output 

Marks before sorting 

40 90 73 81 35 

Marks after sorting  

35 40 73 81 90 

Fig 9.13 sorting of array elements using a function 

Two dimensional arrays 

Like simple array, we can also pass multi-dimensional arrays to functions.  The approach is 

similar to the one we did with one-dimensional arrays.  The rules are simple. 

1. The function must be called by passing only the array name. 

2. In the function definition, we must indicate that the array has two-dimensions by 

including two sets of brackets. 

3. The size of the second dimension must be specified. 

4. The prototype declaration should be similar to the function headers. 

The function given below calculates the average of the values in a two-dimensional matrix. 

double average(int x[][N], int M, int N) 

{ 

int i,j; 
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double sum = 0.0; 

for(i=0; i<M; i++) 

for(j=1; j<N; j++) 

sum+=x[i][j]; 

return(sum/(M*N)); 

} 

This function can be used in a main function as illustrated below: 

main() 

{ 

int M=3, N=2; 

double average(int [] [N], int , int); 

double mean; 

int matrix [M][N]= 

{ 

{1,2},{3,4},{5,6} 

}; 

mean = average(matrix, M, N); 

........................ 

.......................} 

9.18 PASSING STRING TO FUNCTIONS 

The strings are treated as character arrays in C and therefore the rules for passing strings 

to functions are very similar to those for passing arrays to functions. 
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Basic rules are: 

1. The string to be passed must be declared as a formal argument of the function when it is 

define.  Example:  

void display(char item_name[])  

{ 

 .................. 

} 

2. The function prototype must show that the argument is a string.  For the above function 

definition, the prototype can be written as  

 void disiplay(char str[ ]); 

3. A call to the function must have a string array name without subscripts as its actual 

argument.  Example 

display(name); 

where names is a properly declared string array in the calling function. we must not here that, 

like arrays, strings in C cannot be passed by value to functions. 

Pass by value versus pass by pointers 

 The technique used to pass data from one function to another is known as parameter 

passing.  Parameter passing can be done in two ways. 

● Pass by value (also known as call by value). 

● Pass by pointers(also known as pointers) 

In pass by value, values of actual parameters are copied to the variable in the parameter list of 

the called function.  The called function works on the copy and not on the original values of the 

actual parameters.  This ensures that the original data in the calling function cannot be changed 

accidentally. 
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    In pass by pointers (also known as pass by address), the memory addresses of the variables 

rather than the copies of values are sent to the called function.  In this case, the called function 

directly works on the data in the calling function and changed values are available in the calling 

function for its use. 

     Pass by pointers method is often used when manipulating arrays and strings.  This method is 

also used when we require multiple values to be returned by the calling function. 

9.19 THE SCOPE, VISIBILITY AND LIFETIME OF VARIABLES 

Variables in c differ in behaviour from those in most other languages.  For example, IN 

program, a variable retains its value throughout the program.  It is not always the case in C.  it all 

depends on the ‘storage’ class a variable may assume. 

     In C not only do all variables have data type, they also have a storage class.  The following 

variable storage classes are most relevant to functions: 

1. Automatic variables. 

2. External variables. 

3. Static variables. 

4. Register variables. 

We shall briefly discuss the scope, visibility and longevity of each of the above class of 

variables.  The scope of variable determines over what region of the program a variable is 

actually available for use (‘active’).  Longevity refers to the period during which a variable 

retains a given value during execution of a program (‘alive’).  So longevity has a direct effect on 

the utility of a given variable.  The visibility refers to the accessibility of a variable from the 

memory. 

     The variables may also be broadly categorized, depending on the place of their declaration, as 

internal (local) or external (global).  Internal variables are those which are declared within a 

particular function, while external variables are declared outside of any function. 

     It is very important to understand the concept of storage classes and their utility in order to 

develop efficient multifunction programs. 
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Automatic variables 

Automatic variables are declared inside a function in which they are to be utilized.  They 

are created when the function is called and destroyed automatically when the function is exited, 

hence the name automatic.  Automatic variables are therefore private (or local)to the function in 

which they are declared.  Because of this property, automatic variables are also referred to as 

local or internal variables.   

      A variable declared inside a function without storage class specification is, by default, an 

automatic variable.  For instance, the storage class of the variable number in the example below 

is automatic. 

main( ) 

{ 

int number; 

…………… 

…………… 

} 

We may also use the keyword auto to declare automatic variables explicitly. 

main( ) 

{ 

auto int number; 

……………… 

……………. 

} 

     One important feature of automatic variables is that their value cannot be changed 

accidentally by what happens in some other function in the program.  This assures that we may 



419 

 

declare and use the same variable name in different functions in the same program without 

causing any confusion to the compiler. 

Program 9.8 Write a multifunction to illustrate how automatic variables work. 

A program with two subprograms function1 and function2 is shown in Fig.9.14. m is an 

automatic variable and it is declared at the beginning of each function.  M is initialized to 10, 

100, and 1000 in function1, function2, and main respectively. 

     When executed main calls function2 which in turn calls function1.  When main is active, 

m=1000; but when function2 is called, the main’s m is temporarily put on the shelf and the new 

local m= 100 becomes active.  Similarly, when function1 is called, both previous values of m are 

put on the shelf and the latest value of m(=10) becomes active.  As soon as function1 (m=10) is 

finished, function2 (m=100) takes over again.  As soon it done, main (m=100) takes over.  The 

output clearly shows that the value assigned to m in one function does not affect its value in the 

other functions; and the local value of m is destroyed when it leaves a function. 

Program 

void function1(void); 

void function2(void; 

main( ) 

{ 

int m =1000; 

function2(); 

printf(“%d\n”, m);   /* third output*/ 

} 

void function1(void) 

{ 
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int m= 10; 

printf(“%d\n”, m); /*first output*/ 

} 

void function2(void) 

{ 

int m = 100; 

function(); 

printf(“%d\n”, m); /*second output*/ 

} 

Output 

10 

100 

1000 

Fig .9.14 working of automatic variables 

     There are two consequences of the scope and longevity of auto variables worth remembering.  

First, any variable local to main will be normally alive throughout the whole program, although 

it is active only in main.  Secondly, during recursion, the nested variables are unique auto 

variables, a situation similar to function-nested auto variables with identical names. 

External variables 

Variable that are both alive and active throughout the entire program are known as 

external variables.  They are also known as global variables.  Unlike local variables, global 

variables can be accessed by any function in the program.  External variables are declared 

outside a function.  For example, the external declaration of integer number and float length 

might appear as: 
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int number; 

float length = 7.5; 

main() 

{ 

……………….. 

} 

function1() 

{ 

……………………….. 

……………………. 

} 

function2() 

{ 

……………………….. 

……………………. 

} 

     The variables number and length are available for use in all three functions.  In case a local 

variable and a global variable have the same name, the local variable will have precedence over 

global one in the function where it is declared.  Consider the following example: 

int count; 

main() 

{ 



422 

 

count = 10; 

………………………. 

…… 

} 

function { 

{ 

int count = 0; 

……………………. 

count = count +1; 

} 

     When the function references the variable count, it will be referencing only its local variable, 

not the global one.  The value of count in main will not be affected. 

Program 9.9 Write a multifunction program to illustrate the properties of global variables.  A 

program to illustrate the properties of global variables is presented in Fig.9.15.  Note that 

variable x is used in all function but none except fun2, has a definition for x.  Because x has been 

declared ‘above’ all the functions, it is available to each function without having to pass x as a 

function argument.  Further, since the value of x is directly available, we need not use return(x) 

statements in fun1 and fun3.  However, since fun2 has a definition of x, it returns its local value 

of x and therefore uses a return statement.  In fun2, the global x is not visible.  The local x hides 

its visibility here. 

Program  

int fun1(void); 

int fun2(void); 

int fun3(void); 
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int x;  /* global */ 

main() 

{ 

x = 10; /* global x*/ 

printf(“x= %d\n,x); 

printf(“x= %d\n, fun1()); 

printf(“x= %d\n, fun2()); 

printf(“x= %d\n, fun3()); 

} 

fun1(void) 

{ 

x = x + 10; 

} 

int fun2(void) 

{ 

int x;/* local*/ 

x = 1; 

return (x); 

} 

fun3(void) 

{ 
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x = x+10; /*global */ 

} 

Output 

x = 10 

x = 20  

x = 1 

x = 30 

Fig 9.15 illustration of properties of global variables 

     Once a variable has been declared as global, any function can use it and change its value.  

Then, subsequent functions can reference only that new value. 

Global variables as parameters 

Since all functions in a program source file can access global variables, they can be used for 

passing values between the function.  However, using global variables as parameters for passing 

values poses certain problems. 

 The values of global variables which are sent to the called function may be changed 

inadvertently by the called function. 

 Functions are supposed to be independent and isolated modules.  This character is lost, if 

they use global variables. 

 It is not immediately apparent to the reader which values are being sent to the called 

function. 

 A function that uses global variables suffers from reusability. 

One other aspect of a global variable is that it is available only from the point of declaration to 

end of the program.  Consider a program segment as shown below: 

main() 

{ 
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y = 5; 

…………………….. 

…………………….. 

} 

int y; /*global declaration*/ 

fun1() 

{ 

y = y+1; 

} 

     We have a problem here.  As far as main is concerned, y is not defined, so the compiler will  

issue an error message.  Unlike local variables, global variables are initialized to zero by default.  

The statement                   y = y+1; 

in fun1 will, therefore, assign 1 to y. 

External Declaration 

In the program segment above, the main cannot access the variable y as it has been 

declared after the main function.  This problem can be solved by declaring the variable with the 

storage class extern.   

For example: 

main() 

{ 

extern int y;  /*external declaration*/ 

………………………… 

……………………….. 



426 

 

} 

fun1() 

{ 

extern int y;  /*external declaration*/ 

…………………………….. 

} 

int y;  /*declaration*/ 

     Although the variable y has been defined after both the function, the external declaration of y 

inside the functions informs the compiler that y is an integer type defined somewhere else in the 

program.  Note that extern declaration does not allocate storage space for variables.  In case of 

arrays, the definition should include their size as well. 

Example: 

main() 

{ 

int i; 

void print_out(void); 

extern float height []; 

………………………. 

print_out(); 

} 

void print_out(void) 

{ 
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extern float height[]; 

int i; 

……………………….. 

} 

float height[size]; 

An extern within a function provides the type information to just that one function.  We can 

provide type information to all functions within a file by placing external declarations before any 

of them. 

Example: 

extern float height[]; 

main() 

{ 

int i; 

void print_out(void); 

………………………. 

…………………….. 

print_out(); 

} 

void print_out(void) 

{ 

int i; 

……………………. 
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……………………. 

} 

float height[size]; 

     The distinction between definition and declaration also applies to function.  A function is 

defined when its parameters and function body are specified.  This tells the compiler to allocate 

space for the function code and provides type information for the parameters.   Since functions 

are external by default, we declare them (in the calling functions) without the qualifier extern.  

Therefore, the declaration 

void print_out(void); 

is equivalent to  

extern void print_out(void); 

     Function declarations outside of any function behave the same way as variable declarations. 

Static variables 

As the name suggest, the value of static variables persists until the end of the program.  A 

variable can be declared static using the keyword static like 

static int x; 

static float y; 

A static variable may be either an internal type or an external type depending on the place of 

declaration. 

      Internal static variables are those which are declared inside a function.  The scopes of 

internal static variables extend up to the end of the function in which they are defined.  

Therefore, internal static variables are similar to auto variables, except that they remain in 

existence (alive); throughout the remainder of the program.  Therefore, internal static variables 

can be used to retain values between function calls. For example, it can be used to count the 

number of calls made to a function. 
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Program 9.10 Write a program to illustrate the properties of a static variable. 

The program in Fig.9.16 explains the behaviour of a static variable. 

Program  

void stat(void); 

main() 

{ 

int i; 

for(i=1; i<=3; i++) 

stat(); 

} 

void stat(void) 

{ 

static int x = 0; 

x = x+1; 

printf(“x = %d\n”, x); 

} 

Output  

x = 1  

x = 2 

x = 3 

Fig 9.16 illustration of static variable 
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      A static variable is initialized only once, when the program is compiled.  It is never 

initialized again.  During the first call to stat, x is incremented to 1.  Because x is static, this 

value persists and therefore, the next call adds another 1 to x giving it a value of 2.  The value of 

x becomes three when the third call is made. 

Had we declared x as an auto variable, the output would have been: 

x = 1  

x = 1 

x = 1 

      This is because each time stat is called; the auto variable x is initialized to zero.  When 

the function terminates, its value of 1 is lost. 

      An external static variable is declared outside of all functions and is available to all the 

functions in that program.  The difference between a static external variable and a simple 

external variable is that the static external variable is available only within the file where it is 

defined while the simple external variable can be accessed by other files.   

     It is also possible to control the scope of a functi0on.  For example, we would like a 

particular function accessible only to the functions in the file in which it is defined, and not to 

any function in other files.  This can be accomplished by defining ‘that’ function with the storage 

class static. 

Register variables 

We can tell the compiler that a variable should be kept in one of the machine’s registers, 

instead of keeping in the memory(where normal variables are stored).  Since a register access is 

much faster than a memory access, keeping the frequently accessed variables (e.g., loop control 

variables) in the register will lead to faster execution of programs. This is done as follows: 

register int count; 

     Although, ANSI standard does not restrict its application to any particular data type, most 

compilers allow only int or char variables to be placed in the register.   
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Since only a few variables can be placed in the register, it is important to carefully select the 

variables for this purpose.  However, C will automatically convert register variables into non-

register variables once the limit is reached. 

Table 9.1 summarizes the information on the visibility and lifetime of variables of variables in 

function and files. 

Table9.1 scope and lifetime of variables 

Storage class where declared visibility 

(active) 

lifetime(Alive) 

None  

 

 

Extern  

 

 

 

Static     

 

None or auto  

Register  

 

Static  

Before all function in 

a file (may be 

initialized) 

Before all function in 

a file (cannot be 

initialized) 

Extern and the file 

where originally 

declared as global. 

 Before all function in 

a file  

Inside a function (or a 

block) 

Inside a function or 

block 

 

Inside a function 

Entire file plus other 

file where variable is 

declared with extern 

Entire file plus other 

files where variable is 

declared  

 

 

 

Only in that file 

Only in that function 

or block 

Only in that function 

or block 

Only in that function 

 Entire program(Global) 

 

 

Global 

 

 

 

Global  

 

Until end of function  

Until end of function or 

block 

Global   
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Nested blocks 

A set of statements enclosed in a set of braces is known a block or a compound statement.  

Note that all functions including the main use compound statement.  A block can have its own 

declarations and other statements. It is also possible to have a block of such statements inside the 

body of a function or another block, thus creating what is known as nested blocks as shown 

below: 

main() 

{ 

int a =20; 

int b = 10; 

………………………. 

{ 

int a = 0;                                  inner      outer    

int c = a + b;                            block    block 

……………………….. 

} 

b = a; 

} 

      When this program is executed, the value c will be 10, not 30. The statement b = a; 

assigns a value of 20 to b and not zero.  Although the scope of a extends up to the end of main it 

is not “visible” inside the inner block where the variable a has been declared again.  The inner a 
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hides the visibility of the outer a in the inner block.  However, when we leave the inner block, 

the inner a is no longer in scope and the outer a becomes visible again. 

      Remember, the variable b is not re-declared in the inner block and therefore it is visible 

in both the block.  That is why when the statement  

int c = a + b; 

is evaluated, a assumes a values of 0 and b assumes a value of 10. 

Although main’s variables are visible inside the nested block, the reverse is not true. 

Scope rules 

scope 

The region of a program in which a variable is available for use 

visibility 

The program’s ability to access a variable from the memory. 

lifetime 

 The lifetime of a variable is the duration of time in which a variable exists in the memory during 

execution. 

Rules of use 

1. The scope of a global variable is the entire program file. 

2. The scope of a local variable begins at point of declaration and ends at the end of the 

block or function in which it is declared. 

3. The scope of a formal function argument is its own function. 

4. The lifetime (or longevity) or an auto variable declared in main is the entire program 

execution time, although its scope is only the main function. 

5. The life of an auto variable declared in a function ends when the function is exited.   

6. A static local variable, although its scope is limited to its function, its lifetime extends till 

the end of program execution. 
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7. All variables have visibility in their scope, provided they are not declared again. 

8. If a variable is redeclared within its scope again, it loses its visibility in the scope of the 

redeclared variable. 

9.20 MULTIFILE PROGRAMS 

So far we have been assuming that all functions (including the main) are define in one 

file.  However, in real-life programming environment, we may use more than one source files 

which may be compiled separately and linked later to form an executable object code.  This 

approach is very useful because any change in one file does not affect other files thus eliminating 

the need for recompilation of the entire program. 

      Multiple source files can share a variable provided it is declared as an external variable 

appropriately.  Variables that are shared by two or more files are global variables and therefore 

we must declare them accordingly in one file and the explicitly define them with extern in other 

files.  Fig 9.17 illustrates the use of extern declarations in a multifile program. 

      The function main in file1 can reference the variable m that is declared as global in file2.  

Remember, function1 cannot access the variable m.  if, however, the extern int k; statement is 

placed before main, then both the function could refer to m.  This can also be achieved by using 

extern int m; statement inside each function in file1. 

      The extern specifier tells the complier that the following variable types and names have 

already been declared elsewhere and no need to create storage space for them.  It is the 

responsibility of the linker to resolve the reference problem.  It is important to note that a 

multifile global variable should be declared without extern in one (and only one) of the files.  

The extern declaration is done in places where secondary references are made.  If we declare a 

variable as global in two different files used by a single program, then the linker will have a 

conflict as to which variable to use and, therefore, issues a warning. 

file1.c                                                                                                        

main()     

{ 
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extern int m; 

int i; 

…………………………. 

……………………….. 

} 

function1() 

{ 

int j; 

……………………… 

} 

file2.c 

int m/*global variable*/ 

function2() 

{ 

int i; 

…………………………. 

………………………….. 

} 

function3() 

{ 

int count; 
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……………………….. 

…………………………. 

} 

Fig. 9.17 use of extern in a multifile program 

the multiple program shown in fig 9.18 can be modified as shown in fig 9.17 

file1.c                                                                                                        

main()     

int m;  /*global variable*/ 

 

{ 

int i; 

…………………………. 

……………………….. 

} 

function1() 

{ 

int j; 

……………………… 

} 

file2.c 

extern int m 
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function2() 

{ 

int i; 

…………………………. 

………………………….. 

} 

function3() 

{ 

int count; 

……………………….. 

…………………………. 

} 

Fig 9.18 Another version of a multifile program 

      When a function is defined in one file and accessed in another, the later file must include 

a function declaration.  The declaration identifies the function as an external function whose 

definition appears elsewhere.  We usually place such declarations at the beginning of the file, 

before all functions.  Although all functions are assumed to be external, it would be a good 

practice to explicitly declare such functions with the storage class extern. 

Calculation of area under a curve 

One of the applications of computers in numerical analysis is computing he area under a 

curve. One simple method of calculating the area under a curve is to divide the area into number 

of trapezoids of same width and summing up the area of individual trapezoids.  The area of 

trapezoids is given by  
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Area = 0.5 * (h1 + h2) *b; where h1 and h2 are the heights of two sides and b is the width as 

shown in fig.9.19 

The program in fig 9.21 calculates the area for a curve of the equation 

F(x) =x2+1 between any two given limits, say, A and B. 

Input  

Lower limit(A) 

Upper limit(B) 

Number of trapezoids 

 

 

 

 curve 

f(x) 

 

 h1  h2 

 

 

 

 A B 

 

Fig.9.19 Total area under the curve between the given limits. 
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The output for two runs shows that better accuracy is achieved with larger number of trapezoids.  

The actual area for the limits 0 and 3 is 12 units (by analytical method). 

Program 

#include<stdio.h> 

float start_point, /*global variables*/ 

end_point, total_ares; 

int numtraps; 

main() 

{ 

void input(void); 

float find_area(float a, float b, int n); 

print(“AREA UNDER A CURVE”); 

input(); 

total_area = find_area(start_point, end_point, numtraps); 

Printf(“total area %f, total_area); 

} 

void input(void) 

{ 

printf(“\n enter lowe limit:”); 

scanf(“%f”, &start_point); 

printf(“enter upper limit:”); 
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scanf(“%f”, &end_point); 

printf(“enter number of traperzoids:”); 

scanf(“%d”, &numtraps); 

} 

float find_area(float a, float b, int n) 

{ 

float base, lowe, h1, h2;  /*local variables*/ 

float function_x(float x); /*prototype*/ 

float trap_area(float h1, float h2, float base); /*prototype*/ 

base = (b-1)/n; 

lower = a; 

for(lower =a; lower <= b-base; lower = lower + base) 

{ 

h1 = function_x (lower); 

h1 = function_x(lower + base); 

total_area += trap_area(h1, h2, base); 

} 

return(total_area); 

float trap_area(float height_1, float height_2, float base) 

{ 

float area; 
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area = 0.5 * (height_1 + height_2) *base; 

return(area); 

} 

float function_x(float x) 

{ 

return(x*x+1);          } 

Output 

Area under a curve 

Enter lower limit: 0 

Enter upper limit: 3 

Enter number of trapezoids: 30 

Total area= 12.005000 

Area under a curve 

Enter lower limit: 0 

Enter upper limit: 3 

Enter number of trapezoids: 100 

Total area= 12.0004738 

Fig. 9.21 computing area under a curve 
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UNIT II 

1 STRUCTURES AND UNIONS 

Key terms  

Array |structure | dot operator| union|bit field 

1.1 INTRODUCTION  

We have seen that arrays can be used to represent a group of data items that belongs to 

the same type, such as int or float.  However, we cannot use an array if we want to represent a 

collection of data items of different types using a single name.  Fortunately,  C supports a 

constructed  data type known as structures, a mechanism for packing data of different items.  For 

example, it can be used to represent a set of attributes, such as student_name, roll_number and 

marks.  The concept of a structure is analogous to that of a record in many other languages.  

More, examples of such structures are: 

time : seconds, minutes, hours 

date : day, month, year 

book : author, title, price, year 

city : name, country, population 

address : name, door-number, street, city 

inventory : item, stock, value 

customer : name, telephone, city, category 

     Structures help to organize complex data in a more meaningful way.  It is a powerful concept 

that we may often need to use in our program design.  This chapter is devoted to the study of 

structures and their application in program development.  Another related concept known as 

unions is also discussed. 
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1.2 DEFINING A STRUCTURE 

Unlike arrays, structures must be defined first for their format that may be used later to 

declare structure variables.  Let us use an example to illustrate the process of structure definition 

and the creation of structure variables.  Consider a book data base consisting of book name, 

author, number of pages, and price.  We can define a structure to hold this information as 

follows: 

struct book_bank 

{ 

char title[20]; 

char author[15]; 

int pages; 

float price; 

}; 

      The keyword struct declares a structure to hold the details of four data fields, namely 

title, author, pages and price.  These fields are called structure elements or members.  Each 

member may belong to a different type of data.  book_bank is the name of the structure and is 

called the structure tag.  The tag name may be used subsequently to declare variables that have 

the tag’s structure. 

      Note that the above definition has not declared any variables.  It simply describes a 

format called template to represent information as shown below: 

Title 

author 

Pages 

price 

Array of 20 characters 

Array of 15 characters 

Integer 

Float 
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the general format of a structure definition is as follows: 

struct  tag_name 

{ 

data_type  member1; 

data_type  member2; 

…………………… 

………………… 

}; 

 

In defining a structure you may not the following syntax: 

1. The template is terminated with a semicolon. 

2. While the entire definition is considered as a statement, each member is declared 

independently for its name and type in a separate statement inside the template. 

3. The tag name such as book_bank can be used to declare structure variables of its type, 

later in the program. 

Arrays Vs Structures 

Both the arrays and structures are classified as structured data types as they provide a 

mechanism that enable us to access and manipulate data in a relatively easy manner.  But they 

differ in a number of ways. 

1. An array is a collection of related data elements of same type.  Structure can have 

elements of different types. 

2. An array is derived data type whereas a structure is a programmer-defined one. 
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3. Any array behaves like a built-in data type.  All we have to do is to declare an array 

variable can use it.  But in the case of a struct, first we have to design and declare a data 

structure before the variables of that type are declared and used. 

1.3 DECLARING STRUCTURE VARIABLES 

After defining   a structure format we can declare variables of that type.  A structure 

variable declaration is similar to the declaration of variables of any other data types.  It includes 

the following elements: 

1. The keyword struct. 

2. The structure tag name. 

3. List of variable names separated by commas. 

4. A terminating semicolon. 

For example, the statement 

struct book_bank, book1, book2, book3; 

declares book1, book2, and book3 as variables of type struct book_bank. 

Each one of these variables has four members as specified by the template.  The complete 

declaration might look like this: 

struct book_bank 

{ 

char title[20]; 

                                                     char autghor[15]; 

                                                     int pages; 

                                                     float price; 

}; 

struct book_bank book1, book2, book3; 



446 

 

remember that the members of a structure themselves are not variables.  They do not occupy any 

memory until they are associated with the structure variables such as   book1.  When the 

compiler comes across a declaration statement, it reserves memory space for the structure 

variables.  It is also allowed to combine both the structure definition and variables declaration in 

one statement. 

The declaration 

struct book_bank 

{ 

char title[20]; 

char author[15]; 

int pages; 

float price; 

}           book1, book2, book3; 

is valid.  The use of tag name is optional here.  For example: 

struct 

{ 

………….. 

………….. 

} book1, book2, book3; 

declares  book1, book2, and  book3  as structure variables representing three books, but does not 

include a tag name.  However, this approach is not recommended for two reasons. 

1. Without a tag name, we cannot use it for future declarations: 
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2. Normally, structure definitions appear at the beginning of the program file, before any 

variables or functions are defined.  They may also appear before the main, along with 

macro definitions, such as #define.  In such cases, the definition is global and can used 

by other functions as well. 

TYPE-DEFINED STRUCTURES 

We can use the keyword typedef  to define a structure as follows: 

typedef struct 

{ 

…………… 

type memeber1; 

type member2; 

…………….. 

…………….. 

} type_name; 

The type_name represents structure definition associated with it and therefore can be used to 

declare structure variables as shown below: 

type_name variable1, variable2,………….; 

Remember that (1) the name type_name is the type definition name, not a variable and (2) we 

cannot define a variable with typedef declaration. 

Program1.1 Explain how complex number can be represented using structures.  Write two C 

functions: one to return the sum of two complex numbers passed as parameters. 

A complex number has two parts: real and imaginary.  Structures can be used to realize complex  

numbers in C, as shown below: 

struct complex /*declaring the complex number datatype using structure*/ 
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{ 

double real; /* real part*/ 

double imag; /*imaginary part*/ 

}; 

function to return the sum of two complex numbers 

struct complex add(struct complex c1, struct complex c1) 

{ 

struct complex c3; 

c3.real = c1.real+c2.real; 

c3.img = c1.img+c2.img; 

return(c3); 

} 

function to return the product of two complex numbers 

struct complex product(struct complex c1, struct complex c1) 

{ 

struct complex c3; 

c3.real = c1.real*c2.real-c1.img*c2.img; 

c3.img=c1.real*c2.img+c1.img*c2.real; 

return(c3); 

} 
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1.4 ACCESSING STRUCTURE MEMBERS 

We can access and assign values to the m embers of a structure in a number of ways.  As 

mentioned earlier, the members themselves are not variables.  They should be, linked to the 

structure variables in order to make them meaningful members.  For example, the word title, has 

no meaning whereas the phrase ‘title of book3’ has a meaning.  The link between a member and 

a variable is established using the member operator ‘.’ Which is also known as ‘dot operator’ or 

‘period operator’.  For example, 

 book1.price 

is the variable representing the price of  book1  and can be treated like any other ordinary 

variable.  Here is how we would assign values to the members of book1: 

strcpy(book1.title, “BASIC”); 

strcpy(book1.author, “balagurusamhy”); 

book1.pages = 250; 

book1.price = 120.50; 

we can also use scanf  to give the values through the keyword. 

scanf(“%s\n”, book1.title); 

scanf(“%d\n”, &book1.pages); 

are valid input statements. 

Program1.2 Define a structre type, struct personal that would contain person name, date of 

joining and salary.  Using this structure, wirte a program to read this information for one person 

from the keyboard and print the same on the screen. 

    Structure definition along with the program is shown in fig.1.1.  the scanf and printf 

functions illustrate how the member operator ‘.’ Is used to link the structure members to the 

struncture variables.  The variable name with a period and the member name is used like an 

ordinary variable. 
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Program 

struct personal 

{ 

char name[20]; 

int day; 

char month[10]; 

int year; 

float salary; 

main() 

{ 

                                      struct personal person; 

                                      printf(“input values \n”); 

                                      scanf(“%s %d %s %f,  

person.name, 

&person.day, 

person.month, 

&person.year, 

&person.salary); 

                                            printf(“%s %d %s %d %f\n”, 

person.name, 

person.day, 
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person.month, 

person.year, 

person.salary); 

                            } 

Output 

Input values 

M.L.Goel 10 January 1945 4500 

M.L.Goel 10 January 1945 4500.00 

                           Fig 1.1 Defining and accessing structure members. 

1.5 STRUCTURE INTIALIZATION 

Like any other data type, a structure variable can be initialized at compile time. 

main() 

{ 

struct 

{ 

       int weight; 

       float height; 

} 

student = {60, 180.75}; 

………………. 

……………….. 
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} 

This assigns the value 60 to student.weight and 180.75 to student.height. There is one-to-one 

correspondence between the members and their initializing values. 

A lot of variation is possible in initializing a structure.  The following statements 

initialize two structure variables.  Here, it is essential to use a tag name. 

main() 

{ 

    struct st_record 

   { 

    int weight; 

    float height; 

   }; 

struct st_record student1 = {60, 180.75}; 

struct st_record student2 = {53, 170.60}; 

……….. 

             ………….. 

            } 

Another method is to initialize a structure variable outside the function as shown below: 

struct st_record 

{ 

int weight; 
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float height; 

} student1 = {60, 180.75}; 

main()  

{ 

struct st_record student2 = {532,170.60}; 

……………… 

……………. 

} 

      C language does not permit the initialization of individual structure members within the 

template.  The initialization must be done only in the declaration of the actual variables. 

Note that the compile-time initialization of a structure variable must have the following 

elements: 

1. The keyword struct. 

2. The structure tag name. 

3. The name of the variable to declared. 

4. The assignment operator =. 

5. A set of values for the   members of the structure variable, separated by commas and 

enclosed in braces. 

6. A terminating semicolon. 

RULES FOR INITIALIZING STRUCTURES 

There are a few rules to keep in mind while initializing structure variables at compile-time. 

1. We cannot initialize individual members inside the structure template. 

2. The order of values enclosed in braces must match the order of members in the structure 

definition. 
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3. It is permitted to have a partial initialization.  We can initialize only the first few 

members and leave the remaining blank.  The uninitialized members should be only at 

the end of the list. 

4. The unintialized members will be assigned default values as follows: 

 

 Zero for integer and floating point numbers 

 ‘\0’ for characters and strings. 

 

1.6 COPYING AND COMPARING STRUCTURE VARIABLES 

Two variables of the same structure type can be copied the same way as ordinary 

variables.  If person1 and person2 belong to the same structure, then the following statements are 

valid: 

person1 = person2; 

person2 = person1; 

However, the statements such as  

person1 == person2 

person1 != person2 

are not permitted.  C does not permit any logical operations on structure variables.  In case, we 

need to compare them, we may do so by comparing members individually. 

Program1.3 Write a program to illustrate the comparison of structure variables. 

The program shown in 10.2 illustrates how a structure variable can be copied into another of the 

same type.  It also performs member-wise comparison to decide whether tow structure variables 

are identical. 

Program 

struct class 
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{ 

int number;\char name[20]; 

floatr marks; 

}; 

main() 

{ 

int x; 

struct class studen1 = {111,”rao”,72.50}; 

struct class student2 = {222,”reddy”, 67.00}; 

struct class student3; 

student3 = student2; 

x = ((student3.number == student2.numbr) && 

       (student3.marks == student2.marks)) ? 1 :0; 

if (x == 1) 

{ 

printf(“\nstudent2 and student3 are same \n\n”); 

printf(“%d %s %f\n”, student3.number, 

student3.name, 

student3.marks|); 

}else 

printf(“\nstudent2 and student3 are different\n\n”); 



456 

 

} 

Output 

Student2 and student3 are same 

222 Reddy 67.000000 

Fig.1.2 Comparing and copying structure variables 

WORD BOUNDARIES AND SLACK BYTES 

Computer stores structures using the concept of “word boundary”.  The size of a word 

boundary is machine dependent.  In a computer with two bytes word boundary.  The members of 

a structure are stored left_aligned on the word boundary, as shown below.  A character data takes 

one byte and an integer takes two bytes.  One byte between them is left unoccupied.  This 

unoccupied byte is known as the slack byte. 

 

                                                      

                                                  Char      slack               int  

                                                                 Byte 

When we declare structure variables, each one of them may contain slack bytes and the values 

stored in such slack bytes are undefined.  Due to this, even if the members of two variables are 

equal, their structures do not necessarily compare equal C, therefore, does not permit comparison 

of structures.  However, we can design our own function that could compare individual members 

to decide whether the structures are equal or not. 

1.7 OPERATORS ON INDIVIDUAL MEMBERS  

As pointed out earlier, the individual members are identified using the member operator, 

the dot.  A member with the dot operator along with its structure variable can be treated like any 

other variable name and therefore can be manipulated using exp0ressions and operators.  

Consider the program in fig.10.2 we can perform the following operations: 

0 1 2 3 
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if(student1.number == 111) 

student1,marks += 10.00; 

float sum = student1.marks + student2.marks; 

student2,marks *= 0.5; 

We can also apply increment and decrement operators to numeric type members.  For example, 

the following statements are valid. 

student1.numbr ++; 

++ student1.number; 

The precedence of the member operator is higher than all arithmetic and relational operators and 

therefore no parentheses are required. 

THREE WAYS TO ACCESS MEMBERS 

We have used the dot operator to access the members of structure variables.  In fact, there 

are two other ways.  Consider the following structure: 

typedef struct 

{ 

int x; 

int y; 

}vector; 

vector v, *ptr; 

ptr = & v; 

     The identifier pt6r is known as pointer that has been assigned the address of the structure 

variable.  Now, the members can be accessed in three ways. 
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 Using dot notation  : v.x 

 Using indirection notation : (*ptr).x 

 Using selection notation : ptr→x 

The second and third methods will be considered in chpater11. 

1.8 ARRAYS OF STRUCTURES 

We use structures to describe the format of a number of related variables.  For example, 

in analyzing the marks obtained by a class of students, we may use a template to describe student 

name and marks obtained in various subjects and then declare all the students as structure 

variables.  In such cases, we may declare an array of structures, each element of the array 

representing a structure, each element of the array representing a structure variable.  For 

example: 

struct class student[100]; 

Defines an array called student, that consists of 100 elements.  Each element is defined to be of 

the type struct class.  Consider the following declaration: 

struct marks 

{ 

int subject1; 

int subject2; 

int subject3; 

}; 

main() 

{ 

struct marks student[3] = 

{{45,68,81},{75,53,69},{57,36,71}}; 
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This declares the student as an array of three elements student[0], student[1], and student[2] and 

initializes their members as follows: 

student[0].subject1 = 45; 

student[0].subject2 = 65; 

………………. 

……………… 

student[2].subject3 = 71; 

Note that the array is declared just as it would have been with any other array.  Since student is 

an array, we use the usual array-accessing methods to access individual elements and then the 

member operator to access members.  Remember, each element of student array is a structure 

variable with three members. 

An array of structures is stored inside the memory in the same way as a multi-dimensional array.  

The array student actually looks as shown in fig.10.3. 

Program1.4 For the student array discussed above, write a program to calculate the subject-wise 

and student-wise totals and store them as a part of the structure.  The program is shown in 

Fig.10.4.  we have declared a four-member structure, the fourth one for keeping the student-

totals.  We have also declared an array total to keep the subject-totals and the grand-total.  The 

grand-total is given by total.total.  Note that a member name can be any valid C name and can be 

the same as an existing structure variable name.  The linked name total.total represents the total 

member of the structure variable total. 

45 

68 

81 

75 

53 

69 
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 student[0].subject1               

                    .subject2 

       .subject3  

student[1].subject1 

       .subject2 

       .subject3 

student[2].subject1 

       .subject2 

       .subject3 

Fig. 1.3 the array student inside memory 

Program 

struct marks 

{ 

int sub1; 

int sub2; 

int sub3; 

int total; 

}; 

main() 

{ 

int i; 

57 

36 

71 
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struct marks student[3] = {{45,67,81,0}, 

                                                {75,53,69,0} 

                                                 {57,46,71,0}}; 

struct marks total; 

for(i=0; i<=2; i++) 

{ 

student[i].total = student[i].sub1 + 

                                student[i].sub2+ 

                                 student[i].sub3; 

total.sub1 = total.sub1 + student[i].sub1; 

total.sub2 = total.sub2 + student[i].sub2; 

total.sub3 = total.sub3 + student[i].sub3; 

total.total = total.total + student[i].total; 

} 

printf(“STUDENT      TOTAL \n\n”); 

for(i=0; i<=2; i++) 

printf(“student[%d]   %d\n”, i+1,student[i].total); 

printf(“\n SUBJECT TOTAL\n\n”); 

printf(“%s   %d\n%s    %d\n”,  

“subject 1  “,total.sub1, 

“subject2  “,total.sub2, 
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“subject3  “,total.sub3); 

printf(“\nGrand total = %d\n”, total.total); 

} 

Output 

STUDENT  TOTAL 

Student[1]  193 

Student[2]  197 

Student[3]  164 

SUBJECT  TOTAL 

Subject 1  177 

Subject 2   156 

Subject 3  221 

Grand total = 554 

            Fig.1.4 Arrays of structures: illustration of subscripted structure variables 

1.9 ARRAYS WITHIN STRUCTURES 

C permits the use of arrays as structure   members.  We have already used arrays of 

characters inside a structure.  Similarly, we can use single-dimensional or multi-dimensional 

arrays of type int or float.  For example, the following structure declaration is valid: 

struct marks 

{ 

int number; 

float subject[3]; 
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} student[2]; 

     Here, the member subject contains three elements, subject[0], subject[1] and subject[2].  

These elements can be accessed using appropriate subscripts.  For example, the name  

student[1].subject[2]; 

Would refer to the marks obtained in the third subject by the second student. 

Program1.5 Rewrite the program of program 10.4 using an array member to represent the three 

subjects. 

The modified program is shown in Fig.10.5.  You may notice that the use of array name for 

subjects has simplified in code. 

Program 

main() 

{ 

struct marks 

{ 

int sub[3]; 

int total; 

}; 

struct marks student[3] = {45,67,81,0,57,26,72,0}; 

struct marks total; 

int i,j; 

for(i=0; i<=2; i++) 

{ 
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for(j=0; j<=2; j++) 

{ 

student[i].total +=stidemt[i].sub[j]; 

total.sub[j] += student[i].sub[j]; 

} 

total.total += student[i].total; 

} 

printf(“student   total\n\n”) 

for(i=0; i<=2; i++) 

printf(“student[%d]  %d\n”,i+1,student[i].total); 

printf(“\n subject total\n\n”); 

for(j=0; j<=2; j++) 

printf(“subject %d    %d”, j+1, total.sub[j]); 

printf(“\ngrand total = %d\n”, total.total); 

} 

Output 

STUDENT  TOTAL 

Student[1]  193 

 Student[2]  197 

Student[3]  164 

STUDENT  TOTAL 
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Student-1  177 

Student-2  156 

Student-3  221 

 

Grand total = 554 

Fig1.5 Use of subscripted members arrays in structures 

1.10 STRUCTURE WITHIN STRUCTURES  

Structures within a structure means nesting of structures.  Nesting of structures is 

permitted in C.  let us consider the following structure defined to store information about the 

salary of employees. 

struct salary 

{ 

char name;  

char department; 

int basic_pay; 

int dearness_allowance; 

int house_rent_allowance; 

int city_allowance; 

} 

employee; 
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      This structure defines name, department, basic pay and three kinds of allowances.  We 

can group all the items related to allowance together and declare them under a substructure as 

shown below: 

struct salary 

{ 

char name; 

char department; 

struct 

{ 

int dearness; 

int house_rent; 

int city; 

} 

allowance; 

} 

employee; 

      The salary structure contains a member named allowance, which itself is a structure with 

three members.  The members contained in the inner structure namely dearness, house_rent, and 

city can be referred to as: 

employee.allowance.dearness 

employee.allowance.house_rent 

employee.allowance.city 
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An inner-most member in a nested structure can be accessed by chaining all the concerned 

structure variables (from outer-most to inner-most) with the member using dot operator.  The 

following are invalid 

employee.allowance(actual member is missing) 

employee.house_rent(inner structure variable is missing) 

An inner structure can have more than one variable.  The following form of declaration is legal: 

struct salary 

{ 

………… 

struct 

{ 

int dearness; 

……………. 

} 

allowance; 

arrears; 

} 

employee[100]; 

The inner structure has two variables, allowance and arrears.  This implies that both of them have 

the same structure template.  Note the comma after the name allowance.  A base member can be 

accessed as follows: 

employee[1].allowance.dearness 
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employee[1].arrears.dearness 

We can also use tag names to define inner structures.  Example: 

struct pay 

{  

int dearness; 

int house_rent; 

int city; 

}; 

struct salary 

{ 

char name; 

charn department; 

struct pay allowance; 

struct pay arrears; 

}; 

struct salary employee[100]; 

pay template is defined outside the salary template and is used to define the structure of 

allowance and arrears inside the salary structure. 

It is also permissible to nest more than one type of structures. 

struct personal_record 

{ 
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struct name_part name; 

struct addr_part address; 

struct date date_of_birth; 

…………………….. 

…………………….. 

}; 

struct personal_record personal; 

     The first member of this structure is name, which is of the type struct name_part.  Similarly, 

other members have their structure types. 

NOTE: 

C permits nesting upto 15 levels.  However, C99 allows 63 levels of nesting. 

1.11 STRUCTURES AND FUNCTIONS 

We know that the main philosophy of C language is the use of functions.  And therefore, it is 

natural that C supports the passing of structure values as arguments to functions.  Thre are three 

methods by which the values of a structure can be transferred from one function to another. 

1. The first method is to pass each member of the structure as an actual argument of the 

function call.  The actual arguments arte then treated independently like ordinary 

variables.  This is the most elementary method and becomes unmanageable and 

inefficient when the structure size is large.   

2. The second method involves passing of a copy of the entire structure to the called 

function.  Since the function is working on a copy of the structure, any changes to 

structure members within the function are not reflected in the original structure (in the 

calling function).  It is, therefore, necessary for the function to return the entire structure 

back to the calling function.  All the compilers may not support this method of passing 

the entire structure as a parameter. 
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3. The third approach employs a concept called pointers to pass the structure as an 

argument.  In this case, the address location of the structure is passed to the called 

function.  The function can access indirectly the entire structure and work on it.  This is 

similar to the way arrays are passed to function.  This method is more efficient as 

compared to the second one. 

In this section, we discuss in detail the second method, while the third approach using 

pointers is discussed in the next chapter, where pointers are dealt in detail. 

     The general format of sending a copy of a structure to the called function is: 

  function_name(structure_variable_name): 

The called function takes the following form: 

 data_type function_name(struct_type st_name) 

 { 

 ……………… 

 ……………. 

 return(expression); 

 } 

The following points are important to note: 

1. The called function must be declared for its type, appropriate to the data type it is 

expected to return.  For example, if it is returning a copy of the entire structure, then it 

must be declared as struct with an appropriate tag name. 

2. The structure variable used as the actual argument and the corresponding formal 

argument in the called function must be of the same struct type. 

3. The return statement is necessary only when the function is returning some data back to 

the calling function.  The expression may be any simple variable or structure variable or 

an expre3ssion using simple variables. 
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4. When a function returns a structure, it must be assigned to a structure of identical type in 

the calling function. 

5. The called functions must be declared in the calling function appropriately. 

Program 1.6 Write a simple program to illustrate the method of sending an entire structure as a 

parameter to a function. 

A program to update an item is shown in Fig.10.6.  the function update receives a copy of the 

structure variable item as one of its parameters.  Note that both the function update and the 

formal parameter product are declared as type struct stores. It is done so because the function 

uses the parameter product to receive the structure variable item and also to return the update 

values of item. 

     The entire structure returned by update can be copied into a structure of identical type.  The 

statement  

  item = update(item,p_increment,q_increment); 

replaces the old values of item by the new ones. 

Program 

/* passing a copy of the entire structure */ 

struct stores 

{ 

 char name[20]; 

 float price; 

 int quantity; 

}; 

struct stores update(struct stores product, float p, int q); 

float mul(struct stores stock); 
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main() 

{ 

 floatr p_increment, value; 

 int q_increment; 

 struct stores item = (“xyz”,25.75,12); 

 printf(“\n input increment values:”); 

printf(“ price increment and quantity increment\n”); 

 scanf(“%f %d, &p_increment, &q_increment); 

 item = update(itrem, p_increment, q_increment); 

printf(“updated values of item\n\n”); 

printf(“name :%s\n”, item.name); 

printf(“price :%f\n”, item.price); 

printf(“quantity :%d\n”, item.quantity); 

value = mul(item); 

printf(“\nvalue of the item = %f\n”, value); 

} 

struct stores update(struct stores product, float p, int q) 

{ 

product.price+=p; 

product.quantity += q; 

return(product); 
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} 

float mul(struct stores stock) 

 { 

 return(stock.price * stock.quantity); 

 } 

Output 

 Input increment: price increment and quantity increment 

 10  12 

 Updated values of item 

 Name :XYZ 

 Price :35.750000 

 Quantity: 24 

 Value of the item = 858.000000 

 Fig.1.6 Using structure as a function parameter 

You may notice that the template of stores is defined before main().  This has made the data type 

struct stores as global and has enabled the functions update and mul to make use of this 

definition. 

1.12 UNIONS 

Unions are a concept borrowed from structures and therefore follow the same syntax as 

structures.  However, there is major distinction between them in term of storage.  In structures, 

each member has its own storage location, whereas all the members of a union use the same 

location.  This implies that, although a union may contain many members of different types, it 

can handle only one member at a time.  Like structures, a union can be declare3d using the 

keyword union as follows: 
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 union item 

 { 

 int m; 

 floatx; 

 char c; 

 }code; 

This declares a variable code of type union item.  The union contains three members, each with a 

different data type.  However, we can use only one of them at a time.  This is due to the fact that 

only one location is allocated for a union variable, irrespective of its size. 

  Storage of 4 bytes 

 1000          1001          1002          1004 

   

                C   

    M 

    X 

 

Fig.1.7 Sharing of a storage locating by union members 

     The compiler allocates a piece of storage that is large enough to hold the larges variable type 

in the union.  In the declaration above, the member x requires 4 bytes which is the largest among 

the members.  Figure 1.7 shows how all the three variables share the same address.  This 

assumes that a float variable requires 4 bytes of storage. 

     To access union member, we can use the same syntax that we use for structure members.  

That is, 
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  code.m 

  code.x 

  code.c 

are all valid member variables.  During accessing, we should make sure that we are accessing the 

member whose value is currently stored.  For example, the statements such as  

  code.m = 379; 

  code.x = 7859.36; 

  orubtf(“%d”, code.m); 

would produce erroneous output(which is  machine dependent). 

     In effect, a union creates a storage location that can be used by any one of its members at a 

time.  When a different member is assigned a new value, the new value supersedes the previous 

member’s values. 

     Unions may be used in all places where a structure is allowed.  The notation for accessing a 

union member which is nested inside a structure remains the same as for the nested structures. 

     Unions may be initialized when the variable is declared.  but, unlike structures, it can be 

initialized only with a value of the same type as the first union member.  For example, with the 

preceding, the declaration 

  union item abc = {100}; 

is valid but the declaration 

  union item abc = {10.75}; 

 is  invalid.  This is because the typ0e of the first member is int.  other members can be initialized 

by either assigning values or reading from the keyboard. 
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1.13 SIZE OF STRUCTURES 

We normally use structures, unions, and arrays to create variables of large sizes.  The 

actual size of these variables in terms of bytes may change from machine to machine.  We may 

use the unary operator sizeof to tell us the size of a structure (or any variable).  The expression 

  sizeof(struct x) 

Will evaluate the number of bytes required to hold all the members of the structure x.  if y is a 

simple structure variable of type struct.x, expression  

  sizeof(y) 

would also give the same answer.  However, if y is an array variable of type struct x, then  

  sizeof(y) 

would give the total number of bytes the array y requires. 

     This kind of information would be useful to determine the number of records in a database.  

For example, the expression 

  sizeof(y)/sizeof(x)) 

would give the number of elements in the array y. 

1.14 BIT FIELDS 

So far, we have been using integer fields of size 16 bits to store data.  There are occasions 

where data items require much less than 16 bits space.  In such cases, we waste memory space.  

Fortunately, C permits us to use small bit field to hold data items and thereby to pack several 

data items in a word of memory.  Bit fields allow direct manipulation of string of a string of 

preselected bits as if it represented an integral quantity. 

      A bit field is a set of adjacent bits whose size can be from 1 to 16 bits in length.  A word 

can therefore be divided into a number of bit fields.  The name and size of bit fields are defined 

using a structure.  The general form of bit field definition is  

  struct tag_name 
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  { 

   data-type name1: bit-length; 

   data-type name2: bit-length; 

   ………………………………… 

   ………………………………… 

   data-type namen: bit-length; 

  } 

     The data-type is either int or unsigned int or signed int and the bit-length is the number of 

bits used for the specified name.  remember that a signed bit field should have at least 2 bits (one 

bit for sign).  Note that the field name is followed by a colon.  The bit-length is decided by the 

range of value to be stored.  The larges value that can be stored is 2n-1 ,where n is bit-length. 

       The internal representation of bit fields is machine dependent.  That is, it depends on the 

size of int and the ordering of bits.  Some machines store bits from left to right and others from 

right to left.  The sketch below illustrates the layout of bit fields, assuming a 16-bit word that is 

ordered from right to left. 

    15 14       13       12     11        10        9        8         7        6        5         4        3         2         1       

0 

                

 

   Name N        name 2 name 1 

There are several specific points to observe: 

1. The first field always starts with the first bit of the word. 

2. A bit field cannot overlap integer boundaries.  That is, the sum of lengths of all the fields 

in a structure should not be more than the size of a word.  In case, it is more, the 

overlapping field is automatically forced to the beginning of the next word. 
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3. There can be unnamed fields declared with size.  Example: 

i. Unsigned : bit-length 

such fields provide padding within the word. 

4. There can be unused bits in a word. 

5. We cannot take the address of a bit field variable.  This means we cannot use scanf to 

read values int bit fields.  We can neither use pointer to access the bit fields. 

6. Bit fields cannot be arrayed. 

7. Bit fields should be assigned values that are within the range of their size.  If we try to 

assign larger values, behavior would be unpredicted. 

Suppose, we want to store and use personal information of employees in compressed form this 

can be done as follows: 

  struct personal 

  { 

  unsigned sex   : 1 

  unsigned age   : 7 

  unsigned m_status  : 1 

  unsigned children   : 3 

  unsigned   : 4 

  }emp; 

     This defines a variable name emp with four bit fields.  The range of values each field could 

have is follows: 

 Bit field  bit length  range of value  

 sex   1   0 or 1 

 age   7   0 or 127(27-1) 
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 m_status  1   0 or 1 

 Children  3   0 to 7(23-1) 

     Once bit fields are define, they can be referenced just as any other structure-type data item 

would be referenced.  The following assignment statements are valid. 

  emp.sex = 1; 

  emp.age = 50; 

     Remember, we cannot use scanf to read values into a bit field.  We may have to read into a 

temporary variable and then assign its value to the bit field.  For example: 

  scanf(%d %d”, &AGE, &CHILDREN); 

   emp.age = AGE; 

   emp.children = CHILDREN; 

     One restriction in accessing bit fields is that a pointer cannot be used.  However, they can be 

used in normal expressions like any other variable.  For example: 

  sum = sum + emp.age; 

  if(emp.m_status)……..; 

  printf(“%d\n”, emp.age); 

Are valid statements. 

     It is possible to combine normal structure elements with bit field elements.  For example: 

  struct personal 

  { 

   char name[20];    /*normal variable*/ 

   struct addr   address; /*structure variable*/ 
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   unsigned sex : 1; 

   unsigned age : 7; 

   ……………. 

   ………………… 

  } 

  emp[100]; 

     This declares emp as a 100 element array of type struct personal.  This combines normal 

variable name and structure type variable address with bit fields. 

     Bit fields are packed into words as they appear in the definition.  Consider the following 

definition. 

  struct pack 

  { 

   unsigned a:2; 

   int count; 

   unsigned b : 3; 

  }; 

     Here, the bit field a will be in one word, the variable count will be in the second word and the 

bit5 field b will be in the third word.  The  fields  a and b would not get packed into the same 

word. 

NOTE: Other related topics such as ‘structures with pointers’ and ‘structures and linked lists’ 

are discussed in chapter 11 and chapter 12, respectively. 
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2 POINTERS 

Key Terms 

Pointer| memory | pointer | variables | call by reference| call by value  

2.1 INTRODUCTION 

A pointer is a derived data type in C.  it is built from one of the fundamental data types 

available in C.  Pointers contain memory addresses as their values.  Since these memory 

addresses are the locations the computer memory where program instructions and data are stored, 

pointers can be used to access and manipulate data stored in the memory. 

    Pointers are undoubtedly one of the most distinct and exciting features of C language.  It 

has added power and flexibility to the language.  Although they appear little confusing and 

difficult to understand for a beginner, they are a powerful tool and handy to use once they are 

mastered. 

      Pointers are used frequently in C, as they offer a number of benefits to the programmers.  

They include 

1. Pointers are more efficient in handling arrays and data tables. 

2. Poi8nters can be used to return multiple values from a function via function arguments. 

3. Pointer permit references to functions and thereby facilitating passing of functions as 

arguments to other functions. 

4. The use of pointer arrays to character strings results in saving of data storage space in 

memory. 

5. Pointers allow C to support dynamic memory management. 

6. Pointers provide an efficient tool for manipulating dynamic data structures such as 

structures, linked lists, queues, stacks and trees. 

7. Pointers reduce length and complexity of programs. 

8. They increase the execution speed and thus reduce the program execution time. 
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Of course, the real power of C lies in the proper use of pointers.  In this chapter, we will 

examine the pointers in detail and illustrate how to use them in program development.  

Chapter 13 examines the use of pointers for creating and managing linked lists. 

2.2 UNDERSTANDING POINTERS 

The computer’s memory is a sequential collection of storage cells as shown in fig.2.1.  

Each cell, commonly known as a byte, has a number called address associated with it.  Typically, 

the addresses are numbered consecutively, starting from zero.  The last address depends on the 

memory size.  A computer system having 64 K memory will have its last address as 65,535. 

  Memory cell Address                                               

0 

1 

2 

3 

4 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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. 

65,535 

Fig. 2.1 Memory organization 

     Whenever we declare a variable, the system allocates, somewhere in the memory, an 

appropriate location to hold the value of the variable.  Since, every byte has a unique address 

number, this location will have its own address number.  Consider the following statement 

                                                       int quantity = 179; 

      This statement instruct the system to find a location for the integer variable quantity and puts 

the value 179 in that location.  Let us assume that the system has chosen the address location 

5000 for quantity.  We may represent this as shown in Fig.2.2.(Note that the address of a 

variable is the address of the first by occupied by that variable.) 

       During execution of the program, the system always associates the name quantity with the 

address 5000.  (This is something similar to having a house number as well as a house name.)  

We may have access to the value 179 by using either the name quantity or the address 5000.  

Since memory addresses are simply numbers, they can be assigned to some variables that can be 

stored in memory, like any other variable.  Such variables that hold memory addresses are called 

pointer variables.  A pointer variable is, therefore, nothing but a variable that contains an 

address, which is a location of another variable in memory. 

Quantity ← Variable 

                  ← value 

   5000      ← Address  

                                  Fig.2.2 Representation of a variable 

 Remember, since a pointer is a variable, its value is also stored in the memory in another 

location.  Suppose,. We assign the address of quantity to a variable p.  The link between the 

variable p and quantity can be visualized as shown in Fig.2.3.  The address of p is 5048. 

179 
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                            Variable                                      value  

                             Quantity         5000 

 

                              P                                                       

 

Fig.2.3 Pointer variable 

     Since the value of the variable p is the address of the variable quantity, we may access the 

value of quantity by using the value of p and therefore, we say that the variable p ‘points’ to the 

variable quantity. Thus, p gets the name ‘pointer’.  ( we are not really concerned about the 

actual values of pointer variables.  They may be different every time we run the program.  What 

we are concerned about is the relationship between the variables p and quantity.) 

Underlying concepts of pointers 

 Pointers are built on the three underlying concepts as illustrated below:] 

                        

                                 

 

         

                        

     Memory addresses within a computer are referred to as pointer constants.  We cannot change 

them; we can only use them to store data values.  They are like house numbers. 

     We cannot save the value of a memory address directly.  We can only obtain the value 

through the variable stored there using the address operator (&).  The value thus obtained is 

known as pointer value.  The pointer value (i.e. the address of a variable) may change from one 

run of the program to another. 

179 

5000 

Pointer 

constans 

Pointer 

variables 

Pointer 

values 

pointers 
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     Once we have a pointer value, it can be stored into another variable.  The variable that 

contains a pointer value is called a pointer variable. 

2.3 ACCESSING THE ADDRESS OF A VARIABLE 

The actual location of a variable in the memory is system dependent and therefore, the 

address of a variable is not known to us immediately.  How can we then determine the address of 

a variable? This can be done with the help of the operator & available in C.  We have already 

seen the use of this address operator in the scanf function.  The operator & immediately 

preceding a variable return the address of the variable associated with it.  For example, the 

statement 

    P = &quantity 

Would assign the address 5000 (the location of quantity) to the variable p.  The & operator can 

be remembered as address of’. 

      The & operator can be used only with a simple variable or an array element.  The 

following are illegal use of address operator: 

1. &125 (pointing at constants) 

2. int x[10]; 

&x (pointing at array names). 

3. &(x+y) (pointing at expressions). 

If x is an array, then expressions such as  

    &x[0] and &x[i+3] 

are valid and represent the addresses of 0th and (i+3)th elements of x. 

Program 2.1 Write a program to print the address of a variable along with its value. 

The program shown in Fig. 2.4, declares and initializes four variables and then prints out these 

values with their respective storage locations  not that we have used %u format for printing 

address values.  Memory addresses are unsigned integers. 
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Program 

main|() 

{ 

 char a; 

 int x; 

 float p,q; 

 a = á’; 

 x = 125; 

p = 10.25, q = 18.76; 

printf(“%c is stored at addr %u.\n”, a, &a); 

printf(“%d is stored at addr %u.\n”, x, &x); 

printf(“%f is stored at addr %u.\n”, p, &p); 

printf(“%f  is stored at addr %u.\n”, q, &q); 

} 

Output 

A is stored at addr 4436 

125 is stored at addr 4434 

10.250000 is stored at addr 4442. 

18.760000 is stored at addr 4438. 

   Fig.2.4 Accessing the address of a variable 
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2.4 DECLARING POINTER VARIABLES 

In C, every variable must be declared for its type.  Since pointer variables contain 

addresses that belongs to a separate data type, they must be declared as pointers before we use 

them.  The declaration of pointer variable takes the following form: 

    data_type*pt_name; 

This tells the compiler three things about the variable pt_name. 

1. The asterisk(*) tells that the variable pt_name is a pointer variable. 

2. Pt_name needs a memory location. 

3. Pt_name points to a variable of type data_type. 

for example, 

  int *p;  /*integer pointer */ 

declares the variable p as a pointer variable that points to an integer data type.  Remember that 

the type int refers to the data type of the variable being pointed to by p and not the type of the 

value of the pointer.  Similarly, the statement 

   float *x; /*float pointer*/ 

declares x as a pointer to a floating-point variable. 

      The declarations cause the compiler to allocate memory locations for the pointer 

variables p and x.  Since the memory locations have not been assigned any values, these 

locations may contain some unknown values in them and therefore they point to unknown 

locations as shown: 

int *p;        P →  ? 

                                                  Contains                points to  

                   Garbage  unknown location 

? 
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Pointer Declaration style 

 Pointer variables are declared similarly as normal variables except for the addition of the 

unary * operator.  This symbol can appear anywhere between the type name and the printer 

variable name.  Programmers use the following styles: 

 int* p; /*style1 */ 

 int *p; /*style2 */ 

 int * p; /*style3*/ 

However, the style 2 is becoming increasingly popular due to the following reasons: 

1. This style is convenient to have multiple declarations in the same statement.  Example: int *p, 

x,*q; 

2. This style matches with the format used for accessing the target values, Example: int x, 

*p,y; 

x = 10; 

p = &x; 

y = *p;  ‘/* accessing x through p */ 

*p = 20; /* assigning 20 to x */ 

We use in this book the style 2, namely, 

 int*p; 

2.5 INTIALIZATION OF POINTER VARIABLES 

The process of assigning the address of a variable to a pointer variable is known as 

initialization.  As pointer out earlier, all uninitialized pointers will have some unknown values 

that will be interpreted as memory addresses.  They may not be valid addresses or they may point 

to some values that are wrong.  Since the compilers do not detect these errors, the programs with 

uninitialized pointers will produce erroneous results.  It is therefore important to initialize pointer 

variables carefully before they are used in the program. 
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     Once a pointer variable has been declared we can use the assignment operator to initialize the 

variable.  Example: 

 int quantity; 

 int *p; 

 p = &quantity;  /* intitlization*/ 

     We can also combine the initialization with the declaration.  That is, 

  int *p = &quantity; 

is allowed.  The only requirement here is that the variable quantity must be declared before the 

initialization takes place.  Remember, this an initialization of p and not *p. 

     We must ensure that the pointer variables always point to the corresponding type of data.  For 

example. 

 float a,b; 

 int x, *p; 

 p = &a;   /* wrong */ 

 b = *p; 

     Will result in erroneous output because we are trying to assign the address of a float variable 

to an integer pointer.  When we declare a pointer to be of int type, the system assumes that 

any address that the pointer will hold will point to an integer variable.  Since the compiler will 

not detect such errors, care should be taken to avoid wrong pointer assignments. 

     It is also possible to combine the declaration of data variable, the declaration of pointer 

variable and the initialization of the pointer variables and the initialization of the pointer variable 

in one step.  For example, 

  int x, *p = &x;   /* three in one */ 
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is perfectly valid.  It declares x as an integer variable and p as a pointer variable and then 

initializes p to the address of x.  And also remember that the target variable x is declared first.  

The statement  

    int *p = &x, x; 

is not valid. 

     We could also define a pointer variable with an initial value of NULL or 0(zero).  That is, the 

following statements are valued 

    int *p = NULL; 

   int *p = 0; 

POINTER FLEXIBILITY 

 Pointers are flexible.  We can make the same pointer to point to different data variables 

in different statements.  Example: 

 int x, y, z, *p;          

 …….             

p = &x;           

    

int x, y, z, *p;                                      

………….. 

 p = &y; 

 …………..         

                 p     

        

p = &z;  

x  y  z 

 . 
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……….. 

We can also use different pointer to point to the same data variable.  Example: 

 int x;        

 int *p1 = &x; 

 int *p2 = &x;       

 int *p3 = &x; 

………. 

With the exception of NULL and 0, no other constant value can be assigned to a pointer variable.  

For example, the following is wrong: 

   int *p = 5360;  /* absolute address */ 

11.6 ACCESSING A VARIABLE THROUGH ITS POINTER 

Once a pointer has been assigned the address of a variable, the question remains as to 

how to access the value of the variable using the pointer?  This is done by using another unary 

operator * (asterisk).  Usually known as the indirection operator.  Another name for the 

indirection operator is the dereferencing operator.  Consider the following statements: 

   int quantity, *p, n; 

  quantity = 179; 

  p = &quantity; 

  n = *p; 

      The first line declares quantity and n as integer variables and p as a pointer variable 

pointing to an integer.  The second line assigns the value 179 to quantity and the third line 

assigns the address of quantity to the pointer variable p.  The fourth line contains the indirection 

operator *.  When the operator* is placed before a pointer variable in an expression (on the right-

hand side of the equal sign), the pointer returns the value of the variable of which the pointer 

P1 P2 P3 

x 
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value is the address.  In this case, *p returns the value of the variable quantity, because p is the 

address of quantity.  The * can be remembered as ‘value at address’.  Thus the value of n would 

be 179.  The two statements 

   p = &quantity; 

  n = *p; 

are equivalent to  

  n = *&quantity; 

which in turn is equivalent to  

  n = quantity; 

      In C, the assignment of pointers and addresses is always done symbolically, by means of 

symbolic names.  You cannot access the value stored at the address 5368 by writing *5368.  It 

will not work. Program 11.2 illustrates the distinction between pointer value and the value it 

points to. 

Program 2.2 Write a program to illustrate the use of indirection operator ‘*’to access the value 

pointed to by a printer. 

The program and output are shown in Fig.2.5   the program clearly shows how we can access the 

value of a variable using a pointer.  You may notice that the value of the pointer ptr is 4104 and 

the value it points to is 10.  Further, you may also note the following equivalences: 

   x = *(&x) = *ptr = y 

   &x = &*ptr 

Program 

main() 

{ 

int x,y; 
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int *ptr; 

x = 10; 

ptr = &x; 

y = *ptr; 

printf(“value of x is %d\n\n”, x); 

printf(“%d is stored at addr %u\n”, x, &x); 

printf(“%d is stored at addr %u\n”, *&x, &x); 

printf(“%d is stored at addr %u\n”,*ptr, ptr); 

printf(“%d is stored at addr %u\n”, ptr, &ptr); 

printf(“%d is stored at addr %u\n”,y, &y); 

*ptr = 25; 

printf(“\nNow x = %d\n”, x); 

} 

Output 

Value of x is 10 

10 is stored at addr 4104 

10 is stored at addr 4104 

10 is stored at addr 4104 

4104 is stored at addr 4106 

10 is stored at addr 4108 

Now x = 25 

Fig. 2.5 Accessing a variable through its pointer 
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The Actions performed by the program are illustrated in Fig. 2.6.  The statement ptr = &x 

assigns the address of x to ptr and y = *ptr assigns the value pointed to by the pointer ptr to y. 

Note the use of the assignment statement 

  *ptr = 25; 

This statement puts the value of 25 at the memory location whose address is the value of ptr.   

We know that the value of ptr is the address of x and therefore, the old value of x is replaced by 

25.  This, in effect, is equivalent to assigning 25 to x.  This shows how we can change the value 

of a variable indirectly using a pointer and indirection operator. 

Stage  Values in the storage cells and their addresses 

         X  y      ptr 

 

Declaration  10 

    4104              4108       4106                   address 

      X = 10  

     4104              4108       4106                   address 

      ptr=&x  

        4104              4108       4106                   address 

 

      y = *ptr 

                                4104              4108       4106                   address 

   Pointer x 

                        

10 4104 

10 10 4104 

25 10 4104 
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      *ptr=25. 

        4104              4108       4106                   address 

Fig. 2.6 illustration of pointer assignments 

2.7 CHAIN OF POINTERS 

It is possible to make a pointer to point to another pointer, thus creating a chain of 

pointers as shown. 

P2  p1            variable 

                  

     Here, the pointer variable p2 contains the address of the pointer variable p1, which points to 

the location that contains desired value.  This is known as multiple indirections. 

     A variable that is a pointer to a pointer must be declared using additional indirection operator 

symbols in front of the name.  example: 

  int **p2; 

     This declaration tells the compiler that p2 is a pointer to a pointer of int type.  Remember, the 

pointer p2 is not a pointer to an integer, but rather a pointer to an integer pointer. 

     We can access the target value indirectly pointed to by applying the indirection operator 

twice.  Consider the following code: 

main () 

{ 

int x, *p1,  **p2; 

x = 100; 

p1 = &x; /* address of x */ 

p2 = &p1; /* address of p1 */ 

Address 2 Address 1 value 
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printf(“%d”, **p2); 

} 

This code will display the value 100.  Here, p1 is declared as a pointer to an integer and p2 as a 

pointer to a pointer to an integer. 

2.8 POINTER EXPRESSIONS 

Like other variables, pointer variables can be used in expressions.  For example, if p1 and 

p2 are properly declared and initialized pointers, then the following statements are valid. 

 y= *p1 * *p2; same as (*p1) * (*p2) 

 sum = sum + *p1; 

 z = 5* - *p2/*p1;1same as (5 * (-(*p2)))/(*p1) 

 *p2 = *p2 + 10; 

Note that there is a blank space between / and * in the item 3 above.  The following is wrong. 

  z = 5* - *p2 / *p1; 

The symbol /* is considered as the beginning of a comment and therefore the statement fails. 

C allows us to add integers to or subtract integers from pointers, as well as to subtract one 

pointer from another.  P1 + 4, p2-2 and p1-p2 are all allowed.  If p1 and p2 are both pointers to 

the same array, then p2 – p1 gives the number of elements between p1 and p2. 

We may also use short-hand operators with the pointers. 

p1++; 

-p2; 

sum += *p2; 

in addition to arithmetic operations discussed above, pointers can also be compared using 

relational operators.  The expressions such as p1 > p2, p1 == p2, and p1 != p2 are allowed.  



497 

 

However, any comparison of pointers that refer to separate and unrelated variables makes no 

sense.  Comparisons can be used meaningfully in handling arrays and strings. 

     We may not use pointers inh division or multiplication.  For example, expressions such as  

p1/p2 or p1 * p2 or p1/3 

Are not allowed.  Similarly, two pointers cannot be added.  That is, p1 + p2 is illegal. 

Program 2.3 Write a program to illustrate the use of pointers in arithmetic operations. 

The program in Fig.2.7 shows how the pointer variables can be directly used in expressions.  It 

also illustrates the order of evaluation of expressions.  For example, the expression 

4* - *p2/*p1 + 10 

Is evaluated as follows: 

((4 * (-(*p2)))/ (*p1)) + 10 

When *p1 = 12 and *p2 = 4, this expression evaluates to 9.  Remember, since all the variables 

are of type int, the entire evaluation is carried out using the integer arithmetic. 

Program  

main() 

{ 

int a, b, *p1, *p2, x, y, z; 

a = 12;  

b = 4; 

p1 = &a; 

p2 = &b; 

x = *p1 * *p2/ *p1 + 10; 
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printf(“äddres of a = %u\n”, p1); 

printf(“address of b = %u\n”, p2); 

printf(“\n”); 

printf(“a = %d, b = %d\n”, a, b); 

printf(“x = %d, y = %d\n”, x, y); 

*p2 = *p2 + 3; 

*p1 = *p2 – 5; 

z = *p1 * *p2 – 6; 

printf(“\na= %d, b = %d”, a, b); 

printf(‘’z = %d\n’’, z); 

} 

Output 

Address of a = 4020 

Address of b = 4016 

a = 12, b = 4 

x = 42, y = 9 

a = 2, b = 7, z = 8 

Fig.2.7 Evaluation of pointer expressions 
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2.9 POINTER INCREMENTS AND SCALE FACTOR 

We have seen that the pointers can be incremented like 

P1 = P2 + 2; 

P1 = P1 + 1; 

And so on.  Remember, however, an expression like 

P1++; 

Will cause the pointer p1 to point to the next value of its type.  For example, if p1 is an integer 

pointer with an initial value, say 2800, then after the operation p1 = p1 + 1, the value of p1 will 

be 2802, and not 2801.  That is, when we increment a pointer, its value is increased by the length 

of the data type that it points to.  This length called the scale factor. 

     For an IBM  PC, the length of various data types are as follows: 

characters 1bytes 

integers 2 bytes 

floats  4 bytes 

long integers 4 bytes 

doubles 8 bytes       

     The number of bytes used to store various data types depends on the system and can be found 

by making use of the sizeof operator.  For example, then sizeof(x) returns the number of bytes 

needed for the variable.  (Systems like Pentium use 4 bytes for storing integers and 2 bytes for 

short integers). 

RULES OF POINTER OPERATIONS 

The following Rules apply when performing operations on pointer variables. 

1. A pointer variable can be assigned the address of another variable. 

2. A pointer variables can be assigned the values of another pointer variable. 
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3. A pointer variable can be initialized with NULL or zero value. 

4. A pointer variables can be pre-fixed or post-fixed or post-fixed with increment or 

decrement operators. 

5. An integer value may be added or subtracted from a pointer variable. 

6. When two pointers point to the some array, one pointer variable can be subtracted from 

another. 

7. When two pointers point to the objects of the same data types, they can be compared 

using relational operators. 

8. A pointer variable cannot be multiplied by constant. 

9. Two pointer variables cannot be added. 

10. A value cannot be assigned to an arbitrary address (i.e., &x = 10; is illegal). 

2.10 POINTERS AND ARRAYS 

When an array is declared, the compiler allocates a base address and sufficient amount of 

storage to contain all the elements of the array in contiguous memory locations.  The base 

address is the location of the first element (index 0) of the array.  The compiler also defines the 

array name as a constant pointer to the first element.  Suppose we declare an array x as follows: 

int x[5] = {1,2,3,4,5}; 

      Suppose the base address of x is 1000 and assuming that each integer requires two bytes, 

the five elements will be stored as follows: 

 Elements     x[0]  x[1] x[2]      x[3]     

x[4] 

 Value                     

Address   1000      1002    1004   1006   1008 

Base address 

1 2 3 4 5 
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     The name x is defined as a constant pointer pointing to the first element, x[0] and therefore 

the value of x is 1000, the location where x[0] is stored.  That is, 

 x = &x[0] = 1000 

     If we declare p as an integer pointer, then we can make the pointer p to point to the array x by 

the following assignment. 

 p = x; 

This equivalent to  

 p = &x[0]; 

Now, we can access every value of x using p++ to move from one element to another.  The 

relationship between p and x is shown as: 

p = &x[0](=1000) 

p+1 = &x[1](=1002) 

p+2 = &x[2](=1004) 

p+3 = &x[3](=1006) 

p+4 = &x[4](=1008) 

you may notice that the address of an element is calculated using its index and the scale factor of 

the type.  For instance, 

address of x[3] = base address + (3*scale factor of int) 

                           = 1000+(3×2) = 1006 

     When handling arrays, instead of using array indexing, we can use pointers to access array 

elements.  Note that *(o+3) gives the value of x[3].  The pointer accessing method is much faster 

than array indexing.   

     The program 2.4 illustrates the use of pointer accessing method. 
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Program 2.4 Write a program using pointer to compute the sum of all elements stored in an 

array. 

The program shown in Fig.2.8 illustrates how pointer can be used to traverse an array element.  

Since incrementing an array pointer causes it to point to the next element, we need only to add 

one to p each time we go through the loop. 

Program  

main() 

{ 

int *p, sum, i; 

int x[5] = {5, 9, 6, 3, 7}; 

i = 0;  

p = x; / initializing with base address of x */ 

printf(‘’Element value Address\n\n”); 

while (i < 5) 

{ 

printf(“ x[%d] %d %u\n’’, i, *p, p); 

sum = sum + *p; /* accessing array element */ 

i++, p++;  /* incrementing pointer*/ 

} 

printf(‘’\n sum = %d\n’’, sum); 

printf(‘’\n &x[0] = %u\n’’, &x[0]); 
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printf(‘’\n p = %u\n’’, p); 

} 

Output 

Element value Address 

x[0]  5 166 

x[1]  9 168 

x[2]  6 170 

x[3]  3 172 

x[4]  7 174 

sum = 55 

&x[0] = 166 

p = 176 

Fig. 2.8 Accessing one- dimensional array elements using the pointer. 

It is possible to avoid the loop control variable i as shown: 

……………… 

p = x; 

whle (p <= &x[4]) 

{ 

sum += *p; 

p++; 

} 
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……………… 

Here, we compare the pointer p with the address of the last element to determine when the array 

has been traversed. 

Pointer can be used to manipulate two-dimensional arrays as well.  We know that in a one-

dimensional array x, the expression 

 *(x+i) or *(p+i) 

Represents the element x[i] .  similarly, an element in a two-dimensional array can be 

represented by the pointer expressions as follows: 

 *(*(a+i)+j) or *(*(p+i)j) 

 

                                                        0 1  2 3 4 5 

    *(P+4)+3     

          

 .       .  

          

         

p                                 pointer to first row 

                          

      

      

      

      

      

      

4.0 4.3 
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p+i                             pointer to ith row 

*(p+i)                         pointer to first element in the ith row 

*(p+i)+j                     pointer to jthe element in the row 

*(*(p+i)+j)                value stored in the cell(i,j) (ith row and jth column) 

                                         Fig.2.9 Pointer to two-dimension arrays 

     Fig 2.9 illustrates how this expression represents the element a[i][j].  The base address of the 

array a is &a[0][0] and starting at this address, the compiler allocates contiguous space for all the 

elements row-wise.  That is, the first element of the second row is placed immediately after the 

last element of the first row, and so on.  Suppose we declare an array as follows: 

int a[3][4] = { {15,27,11,35}, 

                       {22,19,31,17}, 

                        {31,23,14,36}}; 

The elements of a will be stored as: 

                                            

                                 

If we declare p as an int pointer with the initial address of &a[0][0], then 

                         A[i][j] is equivalent to *(p+4×i+j) 

You may notice that, if we increment I by 1, the p is incremented by 4, the size of each row.  

Then the element a[2][3] is given by *(p+2×4+3) = *(p+11). 

     This is the reason why, when a two=dimensional array is declared, we must specify the size 

of each row so that the compiler can determine the correct storage mapping. 

15 27 11 35 22 19 31 17 31 23 14 36 
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2.11 POINTERS AND CHARACTER STRINGS 

We have seen in chapter that strings are treated like character arrays and therefore, they 

are declared and initialized as follows: 

  char str[5] = ‘’good’’; 

     The compiler automatically inserts the null character ‘\0’ at the end of the string.  C supports 

an alternative   method to create strings using   pointer variables of type char.  Example: 

  char *str = ‘’good’’; 

     This creates a string for the literal and then stores its address in the pointer variable str. 

The pointer str now points to the first character of the string ‘’good’’ as: 

g o O d \0 

 

                                              str 

  we can also use the run-time assignment for giving values to a string pointer.  Example 

char * string1; 

string1 = ‘’good’’; 

note that the assignment 

string1 = ‘’good’’; 

is not string copy, because the variables string1 is a pointer, not a string. 

(as pointer out in chapter 8, C does not support copying one string to another through the 

assignment operation.) 

We can print the content of the string string1 using either printf or puts function as follows; 

printf(“%s”, string1); 

puts(string1); 
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Remember, although string1 is a pointer to the string, it is also the name of the string.  

Therefore, we do not need to use indirection operator * here. 

Like in one-dimensional arrays, we can use a pointer to access the individual characters in a 

string.  This is illustrated by the program 2.5. 

Program 2.5 Write a program using pointers to determine the length of a character string.  A 

program to count the length of a string is shown in Fig.2.10.  the statement 

char *cptr = name; 

declares cptr as a pointer to a character and assigns the address of the first character of name as 

the initial value.  Since a string is always terminated by the null character, the statement 

while(*cptr != ‘\0’) 

Is true until the end of the string is reached. 

     When the while loop is terminated, the pointer cptr holds the address of the null character.  

Therefore, the statement 

length = cptr – name; 

Gives the length of the string name. 

D E L H I \0 

 

           Name         cptr 

            (5,4)         (5,9) 

The output also shows the address location of each character.  Note that each character occupies 

one  memory cell(byte). 

Program 

main() 
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{ 

char *name; 

int length; 

char *cptr = name; 

name = “name”; 

printf(“%s\n”, name); 

while(*cptr != ‘\0’) 

{ 

printf(“%c is stored at address %u\n”, *cptr, cptr); 

cptr++; 

} 

length = cptr – name; 

printf(“\nlength of the string = %d\n”, length); 

} 

Output 

DELHI 

D is stored at address 54 

E is stored at address 55 

L  is stored at address 56 

H  is stored at address 57 

I  is stored at address 58 
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Length of the string = 5 

Fig.2.10 string handling by pointers 

In C a constant character string always represents a pointer to that string.  And therefore 

the following statements are valid. 

char *name; 

name = “Delhi”; 

These statements will declare name as a pointer to character and assign to name the constant 

character string “Delhi”.  You might remember that this type of assignment does not apply to 

character arrays.  The statements like  

char name[20]; 

name = “Delhi”;            do not work. 

2.12 ARRAY OF POINTERS 

One important use of pointers is in handling of a table of strings.  Consider the following 

array of strings: 

char name [3] [25]; 

     This says that the name is a table containing three names, each with a maximum length of 25 

characters (including null character).  The total storage requirements for the name table are 75 

bytes. 

                         

                         

                         

     We know that rarely the individual strings will be of equal lengths.  Therefore, instead of 

making each row a fixed number of characters, we can make it a pointer to a string of varying 

length.  For example, 

char *name[3] = {“New Zealand”, Australia”, “India”}; 
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Declares name to be an array of three pointers to characters, each pointer pointing to a particular 

name as: 

name[0]  New Zealand 

name[1]  Australia 

name[2]  India  

This declaration allocates only 28 bytes, sufficient to hold all the characters as shown 

 

 

 

The following statement would print out all the three names: 

for(i=0; i <= 2; i++) 

printf(“%s\n”, name[i]); 

To access the jth character in the ith name, we may write as  

*(name[i]+j) 

The character arrays with the rows of varying length are called ‘ragged arrays’ and are better 

handled by pointers. 

Remember the difference between the notations *p[3] and (*p)[3].  Since * has a lower 

precedence than [], *p[3] declares p as an array of 3 pointers while (*p)[3] declares p as a 

pointer to an array of three elements. 

2.13 POINTERS AS FUNCTION ARGUMENTS 

We have seen earlier that when an array is p0assed to a function as an argument, only the 

address of the first element of the array is passed, but not the actual values of the array elements.  

If x is an array, when we call sort(x), the address of x[0] is passed to the function sort.  The 

function uses this address for manipulating the array elements.  Similarly, we can pass the 

N  e w  Z   e a l a n d \0 

A  u s t r a l i a \0 

I  n d I a \0 
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address of a variable as an argument to function in the normal fashion.  We used this method 

when discussing functions that return multiple values (see chapter 9). 

     When we pass addresses to a function, the parameters receiving the addresses should be 

pointers.  The process of calling function using pointers to pass the addresses of variables is 

known as ‘call by reference’.  (You know,  the process of passing the actual value of variables is 

known as ‘call by value’.)  the function which is called by ‘reference’ can change the value of 

the variable used in the call. 

Consider the following code: 

main() 

{ 

int x; 

x = 20; 

change(&x);  /* call by reference or address */ 

printf(“%d\n”, x); 

} 

change(int *p) 

{ 

*p = *p + 10; 

} 

When the function change()  is called, the address of the variable x, not its value, is passed into 

the function change(), the variable p is declared as a pointer and therefore p is the address of the 

variable x. the statement, 

*p = *p + 10; 
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Means ‘add 10 to the value stored at the address p’.  since p represents the address of x, the value 

of x is changed from 20 to 30.  Therefore, the output of the program will be 30, not 20. 

     Thus, call by reference provides a mechanism by which the function can change the stored 

values in the calling function.  Note that this mechanism is also known as “call by address” or “ 

pass by pointers”. 

Program 2.6 Write a function using pointers to exchange the values stored in two locations in 

the memory. 

The program in Fig.2.11 shows how the contents of two location can be exchanged using their 

address locations.  The function exchange() receives the addresses of the variables x and y and 

exchange their contents. 

Program 

Void exchange (int *, int *); /* prototyhpe */ 

main() 

{ 

int x, y; 

x = 100; 

y = 200; 

 printf(“Before exchange : x = %d  y = %d\n\n”, x, y); 

exchange(&x, &y);  /* call*/ 

printf(“After exchange   : x = %d  y = %d\n\n”, x, y); 

} 

exchange (int *a, int *b) 

{ 
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int t; 

t = *a; /* Assign the value at address a to t*/ 

*a = *b; /* put b int a */ 

*b = t; /* put t int b*/ 

} 

Output 

Before exchange: x = 100 y = 200 

After exchange   :  x = 200 y = 100 

Fig.  2.11 Passing of pointers as function parameter  

You may not the following points: 

1. The function parameters are declared as pointers. 

2. The dereferenced pointers are used in the function body. 

3. When the function is called, the addresses are passed as actual arguments. 

The use of pointer to access array elements is very common in C .  We have used a pointer to 

traverse array elements in program 11.4.  We can also use this technique in designing user-

defined function discussed in chapter 9.  Let us consider the problem sorting an array of integers 

discussed in program 9.6.  The function sort may be written using pointers(instead of array 

indexing) as shown: 

void sort(int m, int *x) 

{ 

int i, j, temp; 

for(i=1; i<= m-1; i++) 

for (j=1; j<=m-1; j++) 
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if (*(x+j-1 >= *(x+j)) 

{ 

temp = *(x+j-1); 

*(x+j-1) = *(x+j); 

*(x+j) = temp; 

} 

} 

Note that we have used the pointer x (instead of array6 x[]) to receive the address of array passed 

and therefore the pointer x can be used to access the array elements (as pointed out in section 

2.10)   

This function can be used to sort an array of integers as follows: 

………………………. 

int score[4] = {45, 90, 71, 83}; 

…………………….. 

sort(4, score);  /*function call|*/ 

………………… 

the calling function must use the following prototype declaration. 

void sort(int, int *); 

This tells the compiler that the formal argument that receives the array is a pointer, not array 

variable.  Pointer parameters are commonly employed in string function.  Consider the function 

copy which copies one string to another. 

copy (char *s1, char *s2) 

{ 
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while (*s1++ = *s2++) != ‘\0’); 

} 

This copies the contents of s2 into the string s1 parameters s1 and s2 are the pointers to character 

strings, whose initial values are passed from the calling function.  For example, the calling 

statement 

   copy(name1, name2); 

will assign the address of the first element of name1 to s1 and the address of the first element of 

name2 to s2.  Note that the value of *s++ is character that s2 pointed to before s2 was 

incremented.  Due to the postfix ++, s2 is incremented only after the current value has been 

fetched.  Similarly, s1 is incremented only after the assignment has been completed. 

     Each character, after it has been copied, is compared with’\0’ and therefore copying is 

terminated as soon as the ‘\0’ is copied. 

Program 2.7 The program of Fig.2.12 shows how to calculate the sum of two numbers which 

are passed as arguments using the call by reference method. 

Program  

#include<stdio.h> 

#include<conio.h> 

Void swap (int *p, *q); 

main() 

{ 

int x = 0; 

in y = 20; 

clrstr(); 
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printf(“\n value of x and y before swapping are x =%d and y =%d”, x, y); 

swap(&x, &y); 

printf(“\n\nvalue of x and y after swapping are x = %d and y = %d”, x,y); 

getch(); 

} 

void swap(int *p, int *q) 

{ 

int r; 

r = *p; 

*p = *q; 

*q = r; 

} 

Output 

value of x and before swapping are x = 10 and y = 20 

value of x and y after swapping are x = 20 and y =10 

Fig. 2.12 Program to pass the arguments using call by reference method 

2.14 FUNCTION RETURNING POINTERS 

We have seen so far that a function can return a single value by its name or return 

multiple values through pointer parameters.  Since pointers are a data type in C, we can also 

force a function to return a pointer to the calling function.  Consider the following code: 

int *larger(int *, int *); 

main() 
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{ 

int a= 10; 

int b = 20; 

int *p; 

p = larger (&a, &b); /*function call*/ 

printf(“%d”, *p); 

}  

int *larger(int *x, int *y) 

{ 

if(*x>*y) 

return(x); /* address of a */ 

else 

return(y); /* address of b */ 

} 

     The function larger receives the addresses of the variables a and b, decides which one is 

larger using the pointers x and y and then return the address of its location.  The returned value is 

then assigned to the pointer variable p in the calling function.  In this case, the address of b is 

returned and assigned to p and therefore the output will be the value of b, namely, 20. 

     Note that the address returned must be the address of a variable in the calling function.  It is 

an error to return a pointer to a local variable in the called function. 
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2.15 POINTERS TO FUNCTIONS 

A function, like a variable, has a type and an address location in the memory. It is 

therefore, possible to declare a pointer to a function, which can then be used as an argument in 

another function.  A pointer to a function is declared as follows: 

Type (*fptr)(); 

This tells the compiler that fptr is a pointer to a function, which return type value.  The 

parentheses around *fptr  are necessary.  Remember that a statement like 

Type *gptr(); 

Would declare gptr as a function returning a pointer to type. 

     We can   make a function pointer to point a specific function by simply assigning the name of 

function to the pointer.  For example, the statements 

double mul(int, int); 

double(*p1)(); 

p1 = mul; 

Declare p1 as a point to function and mul as a function and then make p1 to point to the function 

mul.  To call the function mul, we may now use the pointer p1 with list of parameters.  That is  

(*p1)(x,y)  /*function call*/ 

is equivalent to  

mul(x,y) 

Note the parentheses around *p1. 

Program 2.8 Write a program that uses a function pointer as a function argument. 

A program to print the function values over a given range of values shown in Fig. 2.13.  The 

printing is done by the function table by evaluating the function passed to it by the main. 
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With table, we declare the parameter f as a pointer to a function as follows: 

double (*f)(); 

The value returned by the function is of type double.  When table is called in the statement 

table (y, 0.0, 2, 0.5); 

 We pass a pointer to the function y as the first parameter of table.  Note that y is not followed by 

a parameter list. 

During the execution of table, the statement 

value = (*f)(a); 

Calls the function y which is pointed to by f, passing it the parameter a.  thus the function y is 

evaluated over the range 0.0 to 2.0 at the intervals of 0.5. 

Similarly, the call 

table(cos, 0.0, PI, 0.5); 

Passes a pointer to cos as its first parameter and therefore, the function table evaluates the value 

of cos over the range 0.0 to PI at the intervals of 0.5. 

Program 

#include<math.h 

#define PI 3.1415926 

double y(double); 

double cos(double); 

double table(double(*f)(),double, double, double); 

main() 

{ 
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printf(“Table of y(x) = 2*x* x-x+1\n\n”); 

table(y, 0.0, 2.0, 0.5); 

printf(“\nTable of cos(x)\n\n”); 

table(cos,0.0,,Pi,0.5); 

} 

double table(double(*f)(),double min, double max, double step) 

{ 

double a, value;  

for(a=min; a<= max; a+= step) 

{ 

value = (*f)(a); 

printf(“%5.2f %10.4\n”, a, value); 

} 

} 

double y(double x) 

{ 

return(2*x*x-x+1); 

} 

Output 

Table of y(x) = 2*x*x-x+1 

0.0 1.0000 

0.50  1.0000 
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1.00  2.0000 

1.50  4.0000 

2.00  7.0000 

Table of cos(x) 

0.0 1.0000 

0.50  0.8776  

1.00  0.5403 

1.50  0.0707 

2.00  -0.4161 

2.50  -0.8011 

3.00  -0.9900 

Fig 2.13 Use of pointers to functions 

COMPATIBILITY AND CASTING 

A variable declared as a pointer is not just a pointer type variable.  It is also a pointer to a 

specific fundamental data type, such as a character.  A pointer therefore always has a type 

associated with it.  We cannot assign a pointer of one type to a pointer of another type, although 

both of them have memory addresses as their values.  This is known as incompatibility of 

pointers. 

     All the pointer variables store memory addresses, which are compatible, but what not 

compatibility is is the underlying data type to which they point to.  We cannot use the assignment 

operator with the pointers of different types.  We can however make explicit assignment between 

incompatible pointer types by using cast operator, as was do with the fundamental types.  

Example: 

int x;  

char *p; 
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p = (char *) & x; 

In such cases, we must ensure that all operations that use the pointer p must apply casting 

properly. 

     We have an exception.  The exception is the void pointer (void*).  The void pointer is a 

generic pointer that can represent any pointer type.  All pointer types can be assigned to a void 

pointer and a void pointer can be assigned to any pointer without casting.  A void pointer is 

created as follows: 

void *vp; 

Remember that since a void pointer has no object type, it cannot be de-referenced. 

2.16 POINTERS AND STRUCTURES 

We know that the name of an array stands for the address of its zeroth element.  The 

same thing is true of the names of arrays of structure variables.  Suppose product is array 

variable of struct type. The name product represents the address of its zeroth element.  

Consider the following declaration: 

struct inventory 

{ 

char name[30]; 

int number; 

float price; 

} product[2], *ptr; 

This statement declares product as an array of two elements, each of the type struct inventory 

and ptr as a pointer to data objects data of type struct inventory.  The assignment 

ptr = product; 
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would assign the address of the zeroth element of product to ptr.  That is, the pointer ptr will 

now point to product[0].  Its members can be accessed using the following notation. 

Ptr →      name 

Ptr →      number 

Ptr →       price 

     The symbol  → is called the arrow operator (also known as member selection operator) 

and is made up of a minus sign and a greater than sign.  Note that ptr   →  is simply another way 

of writing product[0].   

     When the pointer ptr is incremented by one, it is made to point to the next record, i.e., 

product[1].  The following for statement will print the values of members of all the elements of 

product array. 

for(ptr = product; ptr < product+2; ptr++) 

printf(“%s %d %f\n”, ptr → name, ptr→number, ptr→price); 

we could also use the notation 

(*ptr).number 

 To access the member number.  The parentheses around *ptr are necessary because the 

member operator’.’ has a higher precedence than the operator *. 

Program 2.9 Write a program to illustrate the use of structure pointers. 

A program to illustrate the use of a structure pointer to manipulate the elements of an array of 

structures is shown in Fig. 2.14.  The program highlights all the features discussed above.  Note 

that the pointer ptr (of type struct invent) is also used as the loop control index in for loops. 

Program 

struct invent 

{ 
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char *name[20]; 

int number; 

float price; 

}; 

main() 

{ 

struct invent product[3], *ptr; 

printf(“input\n\n”); 

for(ptr = product; ptr < product+3; ptr++) 

scanf(“%s %d %f”, ptr→name, &ptr→number, &ptr→price); 

printf(“\noutput\n\n”); 

ptr = product; 

 

while(ptr < product + 3) 

{ 

       printf(“%-20s %5d %10.2f\n”, ptr→name, 

    ptr→number, 

    ptr→price); 

       ptr++; 

} 

} 
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Output 

INPUT 

Washing_machine 5 7500 

Electric_iron  12 350 

Two_in_one   7 1250 

OUTPUT 

Washing_machine 5 7500.00 

Electric_iron  12 350.00 

Two_in_one   7 1250.00 

Fig. 2.14 pointer to structure variables 

     While using structure pointer, we should take care of the precedence of operators. 

The operators ‘→’ and ‘.’, and [] enjoy the highest priority among the operators.  They bind very 

tightly with their operands.  For example, given the definition 

struct 

{ 

int count; 

float *p; /* pointer inside the struct */ 

} ptr;    

Then the statement 

++ptr→count; 

Increments count, not ptr.   However,  
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(++ptr) →count; 

Increments ptr first, and then links count.  The statement 

ptr++→count; 

Is legal and increments ptr after accessing   count. 

     The following statements also behave in the similar fashion. 

*ptr→p  Fetches whatever p points to. 

*ptr→p++ increments p after accessing whatever it points to. 

(*ptr→p)++ increments whatever p points to. 

*ptr++→p increments ptr after accessing whatever it points to. 

     In the previous chapter, we discussed about passing of a structure as an argument to a 

function.  We also saw an example where a function receives a copy of an entire structure and 

returns it after working on it.  As we mentioned earlier, this method is inefficient in terms of 

both, the execution speed and memory.  We can overcome this drawback by passing a pointer to 

the structure and then using this pointer to work on the structure members.  Consider the 

following function: 

print_invent(struct invent *item) 

{ 

printf(“name: %s\n”, item→name); 

printf(“price: %f\n”, item→price); 

}  

This function can be called by 

print_invent(&product); 
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The formal argument item receives the address of the structure product and therefore it must be 

declared as a pointer of type  struct invent,  which represents the structure of product. 

11.17 TROUBLES WITH POINTERS 

Pointers give us tremendous power and flexibi8lity.  However, they could become a 

nightmare when they are not used correctly.  The major problem with wrong use of pointers is 

that the compiler may not detect the error in most cases and therefore the program is likely to 

produce unexpected results.  The output may not given us any clue regarding the use of a bad 

pointer.  Debugging therefore becomes a difficult task. 

     We list here some pointer errors that are more commonly committed by the programmers. 

 Assigning values to uninitialized pointers 

int * p, m = 100; 

*p = m;  /*error*/ 

 Assigning value to a pointer variable 

int *p, m = 100; 

p = m;  /* error*/ 

 Not dereferencing a pointer when required 

int *p, x = 100; 

p = &x; 

printf(“%d”, p); /* error*/ 

 Assigning the address of an unintialized variables 

int m, *p 

p = &m;  /* error */ 

 Comparing pointers that point to different objects 
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char name1 [ 20 ], name2 [ 30 ]; 

char *p1 = name1; 

char *p2 = name2; 

if(p1 > p2)………. /*error*/ 

We must be careful in declaring and assigning values to pointers correctly before using them.  

We must also make sure that we apply the address operator & and referencing operator * 

correctly to the pointers.  That will save us from sleepless nights. 

3 FILE MANAGEMENT IN C 

Key terms 

File|Name|ftell |rewind| fseek |command line |argument 

3.1 INTRODUCTION 

Until now we have been using the functions such as scanf and printf to read and write data.  

These are console oriented I/O functions, which always use the terminal (keyword and screen) as 

the target place.  This works fine as long as the data is small.  However, many real-life problems 

involve large volumes of data and in such situations, the console oriented I/O operations pose 

two major problems. 

1. It becomes cumbersome and time consuming to handle large volumes of data through 

terminals. 

2. The entire data is lost when either the program is terminated or the computer is turned 

off. 

It is therefore necessary to have a more flexible approach where data can be stored on the disks 

and read wherever necessary, without destroying the data.  This method employs the concept of 

files to store data.  A file is a place on the disk where a group of related data is stored. Like most 

other languages, C supports a number of functions that have the ability to perform basic file 

operations, which include: 

 Naming a file, 
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 Opening a file, 

 Reading data from a file, 

 Writing data to ta file, and  

 Closing a file. 

There are two distinct ways to perform file operations in C.  The first one is known as the low-

level I/O and uses UNIX system calls.  The second method is referred to as the high-level I/O 

operation and uses functions in C’s standard I/O library.  We shall discuss in this chapter, the 

important file handling functions that are available in the C library.  They are listed in table 12.1. 

     There are many other functions.  Not all of them are supported by all compilers.  You should 

check your C library before using a particular I/O function. 

3.2 DEFINING AND OPERNING A FILE 

If we want to store data in a file in the secondary memory, we must specify certain things 

should the file, to the operating system.  They include: 

Table 3.1 High level I/O Functions 

Function name Operation  

fopen() 

 

fclose()  

getc() 

putc() 

fprintf() 

fscanf() 

getw() 

putw() 

fseek() 

ftell() 

rewind() 

 

*Creates a new file for use 

*Opens an existing file for use. 

*Closes a file which has been opened for use. 

*Reads a character from a file 

*Writes a character to a file. 

*Writes a set of data values to a file. 

*Reads a set of data values from a file. 

*Reads an integer from a file. 

*Writes an integer to a file. 

*Sets the position to a desired point in the 

file. 

*Gives the current position in the file. 

*Sets the position to the beginning of the file. 
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1. File name. 

2. Data structure  

3. Purpose. 

Filename is a string of characters that make up a valid file name for the operating system.  It 

may contain two parts, a primary name and an optional period with the extension.  Example: 

input.data  

store 

PROG.C 

Student.c 

Text.out 

Data structure of a file is defined as FILE in the library of standard I/O function 

definitions.  Therefore, all file should be declared as type FILE before they are used.  FILE is a 

defined data type. 

     When we open a file, we must specify what we want to do with the file.  For example, we 

may write data to the file or read the already existing data. 

Following is the general format for declaring and opening a file. 

  FILE *fp; 

  fp = fopen(“filename”, “mode”); 

     The first statement declares the variable fp as a “pointer to the data type FILE”.  As stated 

earlier, FILE is a structure that is defined in the I/O library.  The second statement opens the file 

named file name and assigns an identifier to the FILE type pointer fp.  This pointer, which 

contains all the information about the file is subsequently used as a communication link between 

the system and the program. 
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     The second statement also specifies the purpose of opening this file.  The mode does this job.  

Mode can be one of the following; 

 r open the file for reading only. 

 w  open the file for writing only. 

 a  open the file for appending(or adding ) data to it. 

Note that both the filename and mode are specified as string.  They should be enclosed in double 

quotation marks. 

When trying to open a file, one of the following things may happen: 

1. When the mode is ‘writing’, a file with the specified name is created if the file does not 

exist.  The contents are deleted, if the file already exists. 

2. When the purpose is appending’, the file is opened with the current contents safe.  A file 

with the specified name is created if the file does not exist. 

3. If the purpose is ‘reading’, and if it exists, then the file is opened with the current 

contents safe otherwise an error occurs. 

Consider the following statements: 

FILE *p1, *p2; 

p1 = fopen(“data”, “r”); 

p2 = fopen(“results”, “w”); 

The file data is opened for reading and results is opened for writing.  In case, the results file 

already exists, its contents are deleted and the file is opened as a new file.  If data file does not 

exist, an error will occur. 

     Many recent compilers include additional modes of operation.  They include: 

 r+  The existing file is opened to the beginning for both reading and writing. 

 w+   Same as w except both for reading and writing. 
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 a+  Same as a except both for reading and writing. 

We can open and use a number of files at a time.  This number however depends on the system 

we use. 

3.3 CLOSING A FILE 

A file must be closed as soon as all operations on it have been completed.;  this ensure 

that all outstanding information associated with the file is flushed out from the buffers and all 

links to the file are broken.  It also prevents any accidental misuse of the file.  In case, there is a 

limit to the number of files that can be kept open simultaneously, closing of unwanted files might 

help open the required files.  Another instance where we have to close a file is when we want to 

reopen the same file in a different mode.  The I/O library supports a function to do this for us.  It 

takes the following form: 

  fclose(file_pointer); 

This would close the file associated with the FILE pointer file_pointer.  Look at the following 

segment of a program. 

…………. 

……………. 

FILE *p1, *p2; 

p1 = fopen(“INPUT”, ‘’W’’); 

P2 = fopen(‘’OUTPUT’’, ‘’r’’); 

……………….. 

…………………. 

fclose(p1); 

fclose(p2); 

……………. 
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This program opens two files and closes them after all operations on them are completed.  Once 

a file is closed, its file pointer can be reused for another file. 

As a matter of fact all files are closed automatically wherever a program terminates.  

However, closing a file as soon as you are done with it is a good programming habit. 

3.4 INPUT/OUTPUT OPERATIONS ON FILES 

Once a file is opened, reading out of or writing to it is accomplished using the standard 

I/O routines that are listed in Table 3.1 

The getc and putc Functions 

The simples file I/O functions are getc and putc.  These are analogous to getchar and 

putchar functions and handle one character at a time.  Assume that a file is opened with mode w 

and file pointer fp1.  Then, the statement  

   putc(c, fp1); 

Writes the character contained in the character variable c to the file associated with FILE pointer 

fp1.  Similarly, getc is used to read a character from a file that has been opened in read mode.  

For example, the statement 

   C = getc(fp2); 

Would read a character from the file whose file pointer is fp2. 

     The file pointer moves by one character position for every operation of getc or putc.  The 

getc will return an end-of –file marker EOF, when end of the file has been reached.  Therefore, 

the reading should be terminated when EOF is encountered. 

Program 3.1 Write a program to read data from the keyboard, write it to a file called INPUT, 

again read the same data from the INPUT file, and display it on the screen. 

A program and the related input and output data are shown in Fig.3.1.  We enter the input data 

via the keyboard and the program writes it, character by character, to the file INPUT.  The end of 

the data is indicated by entering an EOF character, which is control-z in the reference system.  

(This may be control-D in other systems.)  The file INPUT is closed at this signal. 
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Program 

#include<stdio.h> 

main() 

{ 

FILE *f1; 

char c; 

printf(“Data Input\n\n); 

/* Open the file INPUT*/ 

f1 = fopen(“INPUT’’, ‘’W’’); 

/* Get a character from keyboard */ 

while ((c = getchar()) != EOF) 

/* Write a character to INPUT*/ 

putc(c,f1); 

/* Close the file INPUT*/ 

fclose(f1); 

printf(‘’\n Data output\n\n’’); 

/* Reopen the file INPUT*/ 

f1 = fopen(‘’INPUT’’, ‘’r’’); 

 

/* Read a character from INPUT*/ 

While ((c=getc(f1)) != EOF) 
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/* Display a character on screen */ 

printf(‘’%c’’. c); 

/* Close the file INPUT */ 

fclose(f1); 

} 

Output 

Data input 

This is a program to test the file handling 

Features on this system^Z. 

Data output 

This is a program to test the file handling 

Features on this system.  

Fig. 3.1 Character oriented read/write operations on a file. 

The file INPUT is again reopened for reading.  The program then reads its content character by 

character, and displays it on the screen.  Reading is terminated when getc encounters the end-of-

file mark EOF. 

     Testing for the end-of-file condition is important.  Any attempt to read past the end of the file 

might either cause the program to terminate with an error or result in an infinite loop situation. 

The getw and putw functions 

The getw and putw are integer-oriented functions.  They are similar to the getc and putc 

functions and are used to read and write integer values.  These functions would be useful when 

we deal with only integer dat.  The general forms of getw and putw are 

  putw(integer, fp); 
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  getw(fp); 

Program 3.2 illustrates the use of putw and getw functions 

Program 3.2 A file named DATA contains a series of integer numbers.  Code a program to read 

these numbers and then write all ódd’ numbers to a file to be called ODD and all éven’ numbers 

to a file to be called EVEN. 

The program is shown in Fig. 3.2.  it uses three files simultaneously and therefore, we need to 

define three-file pointer f1 f2, and f3. 

  putw(number, f1); 

Notice that when we type -1, the reading is terminated and the file is closed.  The next step is to 

open all the three files, DATA for reading, ODD and EVEN for writing.  The contents of DATA 

files are read, integer by integer, by the function getw(f1) and written to ODD or EVEN file 

after an appropriate test. 

Note that the statement 

   (number = getw(f1)) != EOF 

Reads a value, assigns the same to number, and then tests for the end-of-file mark. 

    Finally, the program displays the contents of odd and even files.  It is important to note that 

the files ODD and EVEN opened for writing are closed before they are reopened for reading. 

Program 

#include<stdio.h> 

main() 

{ 

FILE *f1, *f2, *f3; 

int number, I; 



537 

 

printf(“contents of DATA file\n\b”); 

f1 = fopen(“DATA”, “w”);  /* Create DATA file*/ 

for(i=1; i<= 30; i++) 

{ 

scanf(“%d”, &numbr); 

if(number== -1) break; 

putw(number, f1); 

} 

fclose(f1); 

f1 = fopen(“DATA”,”r”); 

f2 = fopen(ÖDD”, “w”); 

f3 = fopen(ËVEN”, “w”); 

/* Read form Data file*/ 

While ((number = getw(f1)) != EOF) 

{ 

if(number %2 = =0) 

putw(number, f3); /* Write to Even file*/ 

else 

putw(number, f2);  /* write to odd file */ 

} 

fclose(f1); 
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fclose(f2); 

fclose(f3); 

f2 = fopen(“ODD”, “r”); 

f3 = fopen(“EVEN”, “r”); 

printf(“\n\nContents of Odd file \n\n); 

whlie((number = getw(f2)) ! = EOF) 

printf(“%4d”, number); 

printf(“\n\nContents of EVEN file \n\n); 

whlie((number = getw(f3)) ! = EOF) 

printf(“%4d”, number); 

fclose(f2); 

fclose(f3); 

} 

Output 

Contents of DATA file 

111 222 333 444 555 666 777 888 999 000  121  232  343  454 565  

-1 

Contents of ODD file 

111 333 555 777 999 121 343 565 

Contents of EVEN file  

222 444 666 888 0 232 454  

Fig. 3.2 Operations on integer data 
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The pfrintf and fscanf Functions  

So far, we have seen functions that can handle only one character or integer at a time. 

Most compilers support two other function, namely fprintf and fscanf that can handle a group of 

mixed data simultaneously. 

     The functions fprintf and fscanf perform I/O operations that are identical to the familiar 

printf and scanf functions, except of course that they work on files.  The first argument of these 

functions is a file pointer which specifies the file to be used.  The general form of fprintf is  

   fprintf(fp, “control string”, list); 

where fp is a file pointer associated either a file that has been opened for writing. The control 

string contains output specifications for the items in the list.  The list may include variables, 

constants and strings.  Example: 

  fprintf(f1, “%s %d %f”, name, age, 7.5); 

    here, name is an array variable of type char and age is an int variable. 

    The general format of fscanf is  

   fprintf(fp, “control string”, list); 

This statement would cause the reading of the items in the list from the file specified by fp, 

according to the specifications contained in the control string.  Example: 

  fscanf(f2, “%s %d”, item, &quantity); 

This statement would cause the reading of the items in the list from the file specified by fp, 

according to the specifications contained in the control string.  Example: 

  fscanf|(f2, “%s %d”, item, &quantity); 

Like scanf, fscanf also returns the number of items that are successfully read.  When the end of 

the file is reached, it returns the value EOF. 

Program 3.3Write a program to open a file named INVENTORY and store in it the following 

data: 
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 Item name  Number  Price  quantity 

 AAA-1  111   17.50  115 

 BBB-2   125   36.00     75 

 C-3    247   31.75    104 

 Extend the program to read this data from the file INVENTORY and display the 

inventory table with the value of each item. 

The program is given in Fig.3.2 The filename INVENTORY is supplied through the keyboard.  

Data is read using the function fscanf from the file stdin, which refers to the terminal and it is 

then written to the file that is being pointed to by the file pointer fp.  Remember that the file 

pointer fp points to the file INVENTORY. 

     After closing the file INVENTORY, it is again reopened for reading.  The data from the file, 

along with the item values are written to the file stdout, which refers to the screen.  While 

reading from a file, care should be taken to use the same format specifications with which the 

contents have been written to the file….e. 

Program 

 #include<stdio.h> 

main() 

{ 

FILE *fp; 

int number, quantity, I; 

float price, value; 

char item[10], filename[10]; 

printf(“Input file name\n”);  
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scanf(“%s”, filename); 

fp = fopen(filename, “w”); 

printf(“Input inventory data \n\n”); 

printf(“Item name Number Price Quantity \n”); 

for(i=1; i<=3; i++) 

{ 

fscanf(stdin, “%s %d %f %d”, item, &number, &price, &quantity); 

fprintf(fp, “%s %d %.2f %d”, item, number, price, quantity); 

} 

fclose(fp); 

fprintf(stdout, “\n\n”); 

fp = fopen(filename, “r”); 

printf(“Item name Number Price quantity Value\n”); 

 

 

for(I = 1; I <= 3; i++) 

{ 

fsanf(fp, “%s %d %f %d”, item, &number, &price, &quantity); 

value = price * quantity; 

fprintf(stdout, “%-8s %7d %8.2f %8d %11.2f\n”, item, number, price, 

quantity, value); 
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} 

fclose(fp); 

} 

Output 

Input file name 

INVENTORY 

Input inventory data 

Item name  Number  Price  quantity 

 AAA-1  111   17.50  115 

 BBB-2   125   36.00    75 

 C-3    247   31.75  104 

 Item name  Number  Price  quantity   Value 

 AAA-1  111   17.50  115  2012.50 

 BBB-2    125   36.00    75  2700.00 

 C-3    247   31.75   104  3302.00 

   Fig. 3.3 Operations on mixed data types 

3.5 ERROR HANDLING DURING I/O IOERATORS 

It is possible that an error may occur during I/O operations on a file.  Typical error situations 

include: 

1. Trying to read beyond the end-of-file mark. 

2. Device overflow. 

3. Trying to use a file that has not been opened. 
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4. Trying to perform an operation on a file, when the file is opened for another type of 

operation. 

5. Opening a file with an invalid filename. 

6. Attempting to write to a write-protected file. 

If we fail to check such read and write errors, a program may behave abnormally when an 

error occurs.  An unchecked error may result in a premature termination of the program or 

incorrect output.  Fortunately, we have two status-inquiry library functions; feof and ferror 

that can help us detect I/O errors in the files. 

     The feof function can be used to test for an end of file condition.  It takes a FILE pointer 

as its only argument and returns a nonzero integer value if all of the data from the specified 

file has been read, and returns zero otherwise.  If fp is pointer to file that has just been 

opened for reading, then the statement 

  if(feor(fp)) 

  printf(“End of data.\n”); 

would display the message “End of data” on reaching the end of file condition. 

     The ferror function reports the status of the file indicated.  It also takes a FILE pointer as 

its argument and returns a nonzero integer if an error has been detected up to that point, 

during processing.  it returns zero otherwise.  The statement 

  if(ferror(fp) != 0) 

printf(“An error has occurred.\n”); 

would print the error message, if the reading is not successful. 

     We know that whenever a file is opened using fopen function, a file pointer is returned.  If the 

file cannot be opened for some reason, then the function returns a NULL pointer.  This facility 

can be used to test whether a file has been opened or not.  Example: 

  if(fp == NULL) 
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  printf(“File could not be opened.\n”); 

Program 3.4 Write a program to illustrate error handling in file operations. 

The program shown in Fig.  3.4 illustrates the use of the NULL pointer test and feof function.  

When we input filename as TETS, the function call 

  fopen(“TETS”, “r”); 

returns a NULL pointer because the file TETS does not exist and therefore the message “Cannot 

open the file” is printed out. 

     Similarly, the call feof(fp2) returns a non-zero integer when the entire data has been read, and 

hence the program prints the message “Ran out of data” and terminates further reading. 

Program 

#include<stdio.h> 

main() 

{ 

char *filename; 

FILE *fp1, *fp2; 

int I, number; 

fp1 = fopen(“TEST”, “w”); 

for(i = 10; I <= 100; I += 10) 

putw(i, fp1); 

fclose(fp1); 

printf(“\n Input filename\n”); 

open_file; 
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scanf(“%s”, filename); 

if((fp2 = fopen(filename, “r”)) == NULL) 

{ 

printf(“Cannot open the file.\n”); 

printf(“”Type file again.\n\n”); 

goto open_file; 

} 

else 

for(I = 1; i <= 20; i++) 

{ 

number = getw(fp2); 

if(feo(fp2)) 

{ 

printf(“\n Ran out of data.\n”); 

break; 

} 

else 

printf(“%d\n”, number); 

} 

fclose(fp2); 

} 
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Output 

Input filename 

TETS  

Cannot open the file. 

Type filename again. 

TEST 

10 

20 

30 

40 

60 

70 

80 

90 

100 

Ran out of data. 

  Fig. 3.4 Illustration of error handling in file operations 

3.6 RANDOM ACCESS TO FILES 

So far we have discussed file functions that are useful for reading and writing data 

sequentially.  There are occasions, however, when we are interested in accessing only a 

particular part of a file and not in reading the other parts.  This can be achieved with the help of 

the functions fseek, ftell, and rewind available in the I/O library. 
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     ftell takes a file pointer and return a number of type long, that corresponds to the current 

position.  This function is useful in saving the current position of a file, which can be used later 

in the program.  It takes the following form: 

  n = ftell(fp); 

n would give the relative offset (in bytes) of the current position.  This means that n bytes have 

already been read (or written). 

rewind takes a file pointer and resets the position to the start of the file.  For example, the 

statement  

  rewind(fp); 

  n = ftell(fp); 

would assign 0 to n because the file position has been set to the start of the file by rewind.  

Remember, the first byte in the file is numbered as 0, second as 1 and so on.  This function helps 

us in reading a file more than once, without having to close and open the file.  Remember that 

whenever a file is opened for reading or writing, a rewind is done implicitly. 

fseek function is used to move the file position to a desired location within the file.  It takes the 

following form: 

  fseek(file_ptr, offset, position); 

file_ptr is a pointer to the file concerned, offset is a number or variable of type long, and position 

is an integer number.  The offset specifies the number of positions (bytes) to be moved from the 

location specified by position.  The position can take one of the following three values: 

  value   meaning 

0 Beginning of file 

1 Current position 

2 End of file 
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     The offset may be positive, meaning move forwards, or negative, meaning move backwards.  

Examples in Table 3.2 illustrate the operations of the fseek function: 

Table 3.2 Operations of fseek Function 

Statement Meaning 

fseek(fp,0l,0); 

 

fseek(fp,0l,1); 

 

fseek(fp,0l,2); 

 

fseek(fp,m,0); 

fseek(fp,m,1); 

fseek(fp,-m,1); 

fseek(fp,-m,2); 

Go to the Beginning 

(Similar to rewind) 

Stay at the current position. 

(Rarely used) 

Go to the end of the file, past the last 

character of the file. 

Move to (m+1)th byte in the file. 

Go forwarded by m bytes. 

Go backward by m bytes from the current 

position. 

Go backward by m bytes from the 

end.(Positions the file to the mth character 

from the end.) 

      

When the operation is successful, fseek returns a zero.  If we attempt to move the file 

pointer beyond the file boundaries, an error occurs and fseek returns -1 (minus one).  It is good 

practice to check whether an error has occurred or not, before proceeding further. 

Program 3.5 Write a program that uses the functions ftell and fseek  

A program employing ftell and fseek functions is shown in Fig.3.5.  We have created a file 

RANDOM with the following contents: 

Positions  → 0 1 2 ……….. 25 

Character 

stored    → A B C  Z 
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We are reading the file twice.  First, we are reading the content of every fifth position and 

printing its value along with its position on the screen.  The second time, we are reading contents 

of the file from the end and printing the same on the screen. 

     During the first reading, the file pointer crosses the end-of-file mark when the parameter n of 

fseek(fp,n,0) becomes 30.  Therefore, after printing the content of position 30, the loop is 

terminated. 

    For reading the file from the end, we use the statement 

  fseek(fp,-1L,2); 

to position the file pointer to the last character.  Since every read causes the position to move 

forward by one position, we have to move it back by two positions to read the next character.  

This is achieved by the function 

  fseek(fp, -2L, 1); 

in the while statement.  This statement also tests whether the file pointer has crossed the file 

boundary or not.  The loop is terminated as soon as it crosses it. 

Program 

#inculde<stdio.h> 

main() 

{ 

FILE *fp; 

long n; 

char c; 

fp = fopen(“RANDOM”, “w”); 

while((c = getchar()) != EOF) 
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 putc(c,fp); 

printf(“No. of characters entered = %1d\n”, ftell(fp)); 

fclose(fp); 

fp = fopen(“RANDOM”, “r”); 

n = 0L; 

 

while(feof(fp) == 0) 

{ 

fseek(fp, n,0); /* Position to (n+1)th character*/ 

printf(“Position of %c is % 1d\n”, getc(fp),ftell(fp)); 

n = n+5L; 

} 

putchar(‘\n\); 

fseek(fp, -=1L,2); /* Position to the last Character */ 

do  

{ 

putchar(getc(fp)); 

} 

while(!fseek(fp, -2L,1)); 

fclose(fp); 

} 
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Output 

ABCDEFGHIJKLMNOPQRSTUVWXYZ^Z 

No. of characters entered = 26 

Position of A is 0 

Position of F is 5 

Position of K is 10 

Position of P is 15 

Position of U is 20 

Position of Z is 25 

ZYXWVUTSRQPONMLKJIHGFEDCBA 

Fig. 3.5 Illustration fseek and ftell functions 

Program 3.6 Write a program to append additional items to the file INVENTORY created in 

Program 3.3 and print total contents of the file. 

The program is shown in Fig 3.6 It uses a structure definition to describe each item and a 

function append () to add an item to the file. 

     On execution, the program requests for the filename to which data is to be appended.  After 

appending the items, the position of the last character in the file is assigned to n and then the file 

is closed. 

     The file is reopened for reading and its contents are displayed.  Note that reading and 

displaying are done under the control of a while loop.  The loop tests the current file position 

against n and is terminated when they become equal. 

Program 

#include<stdio.h> 



552 

 

struct invemt_record 

{ 

char name[10]; 

int number;  

float price; 

int quantity; 

}; 

main() 

{ 

struct invent_record item; 

char filename[10]; 

int response; 

FILE *fp; 

long n; 

vod append(struct invent_record *x, file *y); 

printf(“Type filename:”); 

scanf(“%s”, filename); 

fp = fopen(filename, “a+”); 

do 

{ 

append(&item, fp); 
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printf(“\nItem %s appended.\n”, item.name); 

printf(“\n Do you want to add another item\ (1 for YES /0 for NO)?”); 

scanf(“%d”, &response); 

} 

while (response = =1); 

 n = ftell(fp);  /* position of last character */ 

sclose(fp); 

fp = fopen(filename, “r”); 

while(ftell(fp) < n) 

{ 

fscanf(fp, “%s %d %f %d”,  

item.name, &item.number, &item.price, &item.quantity); 

fprintf(stdout,”%-8s %7d %8.2f %8d\n”, 

item.n;ame, item.number, item.price, item.quantity); 

} 

fclose(fp); 

} 

void append(struct invent_record *product, File *ptr) 

{ 

printf(“Item name:”)’ 

scanf(%s”, product → name); 
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printf(“Item number:”); 

scanf(“%d”, &product→number); 

printf(“Item price:”); 

scanf(“%f”, &product→price); 

printf(“Quantity:”); 

scanf(“%d”, &product→quantity); 

fprintf(ptr, “%s %d %.2f %d”,  

product → name 

product→number 

product→price 

product→quantity); 

} 

Output  

Type file name: INVENTORY 

Item name: XXX 

Item number : 444 

Item Price : 40.50 

Quantity : 34 

Item XXX appended. 

Do you wan to add another item (1 for YES /0 for NO)?1 

Item name: YYY 
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Item number : 555 

Item Price : 50.50 

Quantity : 45 

Item YYY appended 

Do you want to add another item (1 for YES /0 for NO)?0 

AAA-1  111   17.50  115       

 BBB-2   125   36.00    75 

 C-3   247   31.75  104 

 XXX   444   40.50    34 

 YYY   555   50.50    45 

Program 3.7 Write a C program to reverse the first n character in a file.  The file name and the 

value of n are specified on the command line.  Incorporate validation of arguments, that is, the 

program should check that the number of arguments passed and the value of n that are 

meaningful. 

Program 

#include<stdio.h> 

#include<conio.h> 

#include<string.h> 

  void main(int argc, char *argv[]) 

 { 

FILE *fs; 

char str[100]; 
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int i, n, j; 

if (argc != 3)  /*checking the numbe of arguments given at command line*/ 

{ 

puts(Ïmproper number of arguments.”); 

exit(0); 

} 

n = atoi(argv[2]); 

fs = fopen(argv[1], “r”); /* opening the source file in read mode*/ 

if(fs==NULL) 

{ 

printf(“Soruce file cannot be opened.”); 

exit(0); 

} 

I = 0; 

while(1) 

{ 

if(str[i] = fgetc(fs) != EOF) /* Reading contents of file character by character */ 

j = i+1; 

else 

break; 

} 
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fclose(fs); 

fs = fopen(argv[1],”w”);   /*opening the file in write mode*/ 

if(n<0| |n>strlen(str)) 

{ 

printf(Ïncorrect value of n. Program will terminate …..\n\n”); 

getch();’ 

exit(1); 

} 

j = strlen(str); 

for(i= 1; i<= n; i++) 

{ 

fputc(str[j],fs); 

j-; 

} 

fclose|(fs); 

printf(“\n%d characters of the file successfully printed in reverse order”, n); 

getch(); 

} 

Output 

D: \TC\BIN\program source.txt  5 

5 characters of the file successfully printed in reverse order 

  Fig. 3.7 Program to reverse n characters in a file. 
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3.7 COMMAND LINE ARGUMENTS 

What is a command line argument? It is a parameter supplied to a program when the 

program is invoked.  This parameter may represent a file name the program should process.  For 

example, if we want execute a program to copy the contents of a file named X_FILE to another 

one named Y_FILE, then may use a command line like 

   C > PROGRAM X_FILE Y_FILE 

are PROGRAM is the file name where the executable code of the program is stored. This 

eliminates the need for the program to request the user to enter the filenames during execution.  

How do these parameters get into the program? 

     We know that every C program should have one main function and that it marks the 

beginning the program.  But what we have not mentioned so far is that it can also take arguments 

like other functions.  In fact main can take two arguments called argc and argv and the 

information contained in the command line is passed on to the program through these arguments, 

when main is called up by the system. 

     The variable argc is an argument counter that counts the number of arguments on the 

command line.  The argv is an argument vector and represents an array of character pointers that 

point to the command line arguments.  The size of this array will be equal to the value of argc.  

For instance, for the command line given above, argc is three and argv is an array of three 

pointers to strings as shown below: 

argv[0]→PROGRAM 

argv[1] →X_FILE 

argv[2]→Y_FILE  

In order to access the command line arguments, we must declare the main function and its 

parameters as follows: 

main(int arge, char *argv[]) 

{ 
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…………… 

……………… 

} 

     The first parameter in the command line is always the program name and therefore 

argv[0] always represents the program name. 

Program 3.8 Write a program that will receive a filename and a line of text as command line 

arguments and write the text to the file. 

Fig 3.8 shows the use of command line arguments.  The command line is  

F12_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG 

     Each word in the command line is an argument to the main and therefore the total number of 

arguments is 9. 

     The argument vector argv[1] points to the string TEXT and therefore the statement 

  fp = fopen(argv[1], “w”); 

opens a file with the name TEXT.  The for loop that follows immediately writes the remaining 7 

arguments to the file TEXT. 

Program 

#include<stdio.h> 

main(int arge, char *argv[]) 

{ 

FILE *fp; 

int I; 

char word[15]; 
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fp = fopen(argv[1], “w”); /* open file with name argv[1] */ 

printf(“\n No. of arguments in command line = %d \n\n”, argc); 

for(i = 2; i < argc; i++) 

fprintf(fp, “%s”, argv[i]); /* write to file argv[1] */ 

fclose(fp); 

/* Writing content of the file to screen */ 

printf(“Contents of %s file\n\n”, argv[1]); 

fp = fopen(argv[1], “r”); 

for(i = 2; i < argc; i++) 

{ 

fscanf(fp, “%s”, word); 

printf(“%s”, word); 

} 

fclose(fp); 

printf(“\n\n”); 

/*Writing the arguments from memory */ 

for ( i= 0; i < argc; i++) 

printf(“%*s \n”, i*5, argv[i]); 

} 

Output 

F12_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG 
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No. of arguments in Command Line = 9 

Contents of TEXT file 

AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG 

C:\C\F12_7.EXE 

       TEXT  

AAAAAA 

 BBBBBB 

 CCCCCC 

 DDDDDD  

EEEEEE 

 FFFFFF 

 GGGGGG 

Fig. 3.8 Use of Command line arguments. 

4 DYNAMIC MEMORY ALLOCATION AND LINKED LISTS 

KEY TERMS 

Dynamic memory allocation | stack, Heap | Linked list | Size of operators | malloc 

function | calloc function| realloc function | Null pointer  

4.1  INTRODUCTION 

Most often we face situations in programming where the data is dynamic in nature.  That 

is, the number of data items keep changing during execution of the program.  For example, 

consider a program for processing the list of customers of a corporation.  The list grows when 

names are added and shrinks when names are deleted.  When list grows we need to allocate more 

memory space to the list to accommodate additional data items.  Situations can be handled more 
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easily and effectively by using what is known as dynamic data structures in conjunction with 

dynamic memory management techniques. 

     Dynamic data structures provide flexibility in adding, deleting or rearranging data items at 

run time.  Dynamic memory management techniques permit us to allocate additional memory 

space or to release unwanted space at run time, thus, optimizing the use of storage space.  This 

chapter discusses the concept of linked lists, one of the basic types of dynamic data structures.  

Before we take up linked lists, we shall briefly introduce the dynamic storage management 

functions that are available in C.  These functions would be extensively used in processing linked 

lists. 

4.2 DYNAMIC MEMORY ALLOCATION 

C Language requires the number of elements in an array to be specified at compile time.  

But we may not be able to do so always.  Our initial judgment of size, if it is wrong, may cause 

failure of the program or wastage of memory space. 

     Many languages permit a programmer to specify an array’s size at run time.  Such languages 

have the abi8lity to calculate and assign, during execution, the memory space required by the 

variables in a program.  The process of allocating memory at run time is known as dynamic 

memory allocation.  Although C does not inherently have this facility, there are four library 

routines known as “memory management functions” that can be used for allocating and freeing 

memory during program execution.  They are listed in Table 4.1.  These functions help us build 

complex application programs that use the available memory intelligently. 

Table 4.1 Memory Allocation Functions 

Function  Task 

malloc Allocates request size of bytes and returns a pointer to the 

first byte of the allocated space. 

calloc Allocates space for an array of elements, initializes  

And then returns a pointer to the memory. 

free Frees previously allocated space. 

realloc Modifies the size of previously allocated space. 
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MEMORY ALLOCATION PROCESS 

Before we discuss these functions, let us look at the memory allocation process 

associated with a C program.  Fig. 4.1 shows the conceptual view of storage of a C program in 

memory. 

 

     The program instructions and global and static variables are stored in a region known as 

permanent storage area and the local variables are stored in another area called stack.  The 

memory space that is located between these two regions is available for dynamic allocation 

during execution of the program.  This free memory region is called the heap.  The size of the 

heap keeps changing when program is executed due to creation and death of variables that are 

local to functions and blocks.  Therefore, it is possible to encounter memory “overflow’’ during 

dynamic allocation process.  In such situations, the memory allocation functions mentioned 

above return a NULL pointer (when they fail to locate enough memory requested). 

4.3 ALLOCATING A BLOCK OF MEMORY: MALLOC 

A block of memory may be allocated using the function malloc.  The malloc function reserves a 

block of memory of specified size and returns a pointer of type void.  This means that we can 

assign it to any type of pointer.  It takes the following form: 

  ptr = (cast-type *)  malloc(byte-size); 

ptr is a pointer of type cast-type.  The malloc returns a pointer (or cast-type) to an area of 

memory with size byte-size. 

Example: 

  x = (int *) malloc (100 *sizeof(int)); 

Local variables 

Free memory 

Global variables 

C program 

instructions 
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     On successful execution of this statement, a memory space equivalent to “100 times the size 

of an int” bytes is reserved and the address of the first byte of the memory allocated is assigned 

to the pointer x of type of int. 

     Similarly, the statement 

  cptr = (char*) malloc(10); 

allocates 10 bytes of space for the pointer cptr of type char.  This is illustrated as: 

  cptr 

     10 bytes of space 

   Address of first byte      

     Note that the storage space allocated dynamically has no name and therefore its contents can 

be accessed only through a pointer. 

     We may also use malloc to allocate space for complex data types such as structures.  

Example: 

  st_var = (struct store *) malloc(sizeof(struct store)); 

where, st_var is a pointer of type struct store. 

     Remember, the malloc allocates a block of contiguous bytes.  The allocation can fail if the 

space in the heap is not sufficient to satisfy the request.  If it fails, it returns a NULL.  We should 

therefore check whether the allocation is successful before using the memory pointer.  This is 

illustrated in the program in Fig. 4.2. 

Program 4.1 Write a program that uses a table of integers whose size will be specified 

interactively at run time. 

The program is given in Fig.4.2.  It tests for availability of memory space of required size.  If it is 

available then the required space is allocated and the address of the first byte of the space 

allocated is displayed.  The program also illustrates the use of pointer variable for storing and 

accessing the table values. 

. 
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Program 

#include<stdio.h> 

#include<stdlib.h> 

#define NULL 0 

main() 

{ 

int *p, *table; 

int size; 

printf(“\n What is the size of table?”); 

scanf(“%d”, size); 

printf(“\n”) 

/*-----------------Memory allocation----------------------------*/ 

if(table = (int*)malloc(size *sizeof(int))) = = NULL) 

{ 

printf(“No space available \n”); 

exit(1); 

} 

printf(“\n Address of the first byte is %u\n”, table); 

/*Reading table values*/ 

printf(“\n Input table values \n”); 

for(p = table; p<table + size; p++) 

scanf(“%d”, p); 
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/*printing table values in reverse order */ 

for(p = table + size -1; p>= table; p--) 

printf(“%d is stored at address %u \n”, *p, p); 

} 

Output 

What is the size of the table? 5 

Address of the first byte is  2262 

Input table values 

11 12 13 14 15 

15 is stored at address 2270. 

14 is stored at address 2268. 

13 is stored at address 2266. 

12 is stored at address 2264. 

11 is stored at address 2262. 

Fig. 4.2 Memory allocation with malloc 

4.4 ALLOCATING MULTIPLE BLOCKS OF MEMORY: CALLOC 

calloc is another memory allocation function that is normally used for requesting memory 

space at run time for storing derived data types such as arrays and structures.  While malloc 

allocates a single block of storage space, calloc allocates multiple blocks of storage, each of the 

same size, and then sets all bytes to zero.  The general form of calloc is: 

  ptr = (cast-type *) calloc (n, elem-size); 
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     The above statement allocates contiguous space for n blocks, each size elem-size bytes.  All 

bytes are initialized to zero and a pointer to the first byte of the allocated region is returned.  If 

there is not enough space, a NULL pointer is returned. 

     The following segment of a program allocates space for a structure variable: 

……….. 

…………….. 

struct student 

{ 

char name[25]; 

float age; 

long int id_num; 

}; 

typedef struct student record; 

record *st_ptr; 

int class_size = 30; 

st_ptr = (record *) calloc(class_size, sizeof(record)); 

……………… 

……………… 

record is of type struct student having three members.  name age and id_num.  The calloc 

allocates memory to hold data for 30 such records.  We must be sure that the requested memory 

has been allocated successfully before using the st_ptr.  This maybe done as follows: 

if(st_ptr = = NULL) 
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{ 

printf(“Avaialable memory not sufficient”); 

exit(1); 

} 

4.5 RELEASING THE USED SPACE: FREE 

Compile-time storage of a variable is allocated and released by the system in accordance 

with its storage class.  With the dynamic run-time allocation, it is our responsibility to release the 

space when it is not required.  The release of storage space becomes important when the storage 

is limited. 

     When we no longer need the data we stored in a block of memory, and we do not intend to 

use that block for storing any other information, we may release that block of memory for future 

use, using the free function: 

   free (ptr); 

ptr is a pointer to a memory block, which has already been created by malloc or calloc.  Use of 

an invalid pointer in the call may create problems and cause system crash.  We should remember 

two things here: 

1. It is not the pointer that is being released but rather what it points to. 

2. To release an array of memory that was allocated by calloc we need only to release the 

pointer once.  It is an error to attempt to release elements individually. 

The use of free function has been illustrated in program 4.2.   

4.6 ALTERING THE SIZE OF A BLOCK: REALLOC 

It is likely that we discover later, the previously allocated memory is not sufficient and 

we need additional space for more elements.  It is also possible that the memory allocated is 

much larger than necessary and we want to reduce it.  In both the cases, we can change the 

memory size already allocated with the help of the function realloc. This process is called the 

reallocation of memory.  For example, if the original allocation is done by the statement 
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ptr = malloc(size); 

then reallocation of space may be done by the statement 

  ptr = realloc(ptr, newsize); 

     This function allocates a new memory space of size newsize to the pointer variable ptr and 

returns a pointer to the first byte of the new memory block.  The newsize may be larger or 

smaller than the size.  Remember, the new memory block may or may not begin at the same 

place as the old one.  In case, it is not able to find additional space in the same region, it will 

create the same in an entirely new region and move the contents of the old block into the new 

block.  The function guarantees that the old data will remain intact. 

     If the function is unsuccessful in locating additional space, it returns a NULL pointer and the 

original block is freed (lost).  This implies that it is necessary to test the success of operation 

before proceeding further.  This is illustrated in the program of program 4.2. 

Program 4.2 Write a program to store a character string in a block of memory space created by 

malloc and then modify the same to store a larger string. 

The program is shown in Fig. 4.3.  The output illustrates that the original buffer size obtained is 

modified to contain a larger string.  Note that the original contents of the buffer remains same 

even after modification of the original size. 

Program 

#include<stdio.h> 

#include<stdlib.h> 

#define NULL 0 

main() 

{ 

char *buffer; 
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/* Allocating memory */ 

if((buffer = (char *)malloc(10)) = = NULL) 

{ 

printf(“malloc failed.\n”); 

exit(1); 

} 

printf(“Buffer of size %d created \n”, _msize(buffer)); 

strcpy(buffer, “HYDERABAD”); 

printf(“\nBuffer contains: %s \n”, buffer); 

/* Reallocation */ 

if((buffer = (char *)realloc(buffer, 15)) = = NULL) 

{ 

printf(“Reallocation failed.\n”); 

exit(1); 

} 

printf(“\n Buffer size modified.\n”); 

printf(“\nBuffer still contains: %s \n”, buffer); 

strcpy(buffer, “SECUNDERABAD”); 

printf(“\n Buffer now contains: %s \n”, buffer); 

/* Freeing memory */ 

} 
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Output 

Buffer of size 10 created. 

Buffer contains: HYDERABAD 

Buffer size modified 

Buffer still contains: HYDERABAD 

Buffer now contains: SECUNDERABAD 

  Fig.4.3 Reallocation and release of memory space. 

4.7 CONCEPTS OF LINKED LISTS 

We know that a list refers to a set of items organized sequentially.  An array is an 

example of list. In an array, the sequential organization is provided implicitly by its index.  We 

use the index for accessing and manipulation of array elements.  One major problem with the 

arrays is that the size of an array must be specified precisely at the beginning.  As pointer out 

earlier, this may be a difficult task in many real-life applications. 

     A completely different way to represent a list is to make each item in the list part of a 

structure that also contains a “link” to the structure containing the next item, as shown in Fig. 

4.4.  This type of list is called a linked list because it is a list whose order is given by links from 

one item to the next. 

 structure 1   structure 2   structure 3 

     

     

                  next 

Fig. 4.4 A linked list 

     Each structure of the list is called a node and consists of two fields, one containing the item, 

and the other containing the address of the next item (a pointer to the next item) in the list.  A 

linked list is therefore a collection of structures ordered not by their physical placement in 

item  Item  item  
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memory (like an array) but by logical links that are stored as part of the data in the structure 

itself.  The link is in the form of a pointer to another structure of the same type.  Such a structure 

is represented as follows: 

stuct node 

{ 

int item; 

struct node *next; 

};  

     The first member is an integer item and the second a pointer to the next node in the list as 

shown below.  Remember, the item is an integer here only for simplicity, and could be any 

complex data type. 

                                    node 

                  → 

         item    next 

     Such structures, which contain a member field that points to the same structure type are called self-

referential structures. 

     A node may be represented in general form as follows: 

struct tag-name 

{ 

type member1; 

type member2; 

………………. 

………………. 
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struct tag-name *next; 

}; 

     The structure may contain more than one item with different data types.  However, one of the 

items must be a pointer of the type tag-name. 

       member1     member2                      memberN    next  

Let use consider a simple example to illustrate the concept of linking.  Suppose we define a 

structure as follows: 

struct link_list 

{ 

float age; 

struct link_list *next; 

}; 

For simplicity, let as assume that the list contains two nodes node1 and node2.  They are of type 

struct link_list and are defined as follows: 

   struct link_list node1, node 2; 

This statement creates space for two nodes each containing two empty fields as shown: 

 

node1 

  node1.age 

         

 node1.next 

  ………………………..   
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    node 2 

          

       node2.age 

              node2.next 

The next pointer of node1 can be made to point to node2 by the statement 

node1.next = &node2; 

This statement stores the address of node2 into the field node1.next and thus establishes a “link” 

between node1 and node2 as shown: 

  

                             node1 

node1.age 

         

 node1.next 

 

 

      node 2 

      

              node2.age 

              node2.next 

“XXXX” is the address of node2 where the value of the variable node2.age will be stored.  Now 

let us assign values to the field age. 

 

 

 

XXXX 
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node1.age = 35.50; 

node2.age = 49.00 

The result is as follows: 

    node1 

  node1.age 

  node1.next      node2 

      node2.age 

   

       node2.next               

We may continue this process to create a liked list of any number of values. 

For example: 

node2.next = &node3; 

would add another  link provided node3 has been declared as a variable of type struct link list. 

     Note list goes on forever.  Every list must have an end.  We must therefore indicate the end of 

a linked list.  This is necessary for processing the list.  C has a special pointer value called null 

that can be store in the next field of the last node.  In our two-node list, the end of the list is 

marked as follows: 

node2.next = 0; 

The final linked list containing two nodes is as shown: 

     node1 

node1.age 

        node1.next      node2 

35.50 

 

49.00 

 

35.50 

XXXX 
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           LINK  node2.age 

   

       node2.next 

           (NULL pointer)             

The value of the age member of node2 can be accessed using the next  member of node1 as 

follows: 

   printf(“%f\n”, node.next→age); 

4.8 ADVANTAGES OF LINKED LISTS 

A  Linked list is dynamic data structure.  Therefore, the primary advantage of linked lists 

over arrays is that linked lists can grow or shrink in size during the execution of a program.  A 

linked list can be made just as long as required. 

      Another advantage is that a linked list does not waste memory space.  It uses the memory 

that is just needed for the list at any point of time.  This is because it is not necessary to specify 

the number of nodes to be used in the list. 

      The third, and the most important advantage is that the linked lists provide flexibility is 

allowing the items to be rearranged efficiently.  It is easier to insert or delete items by 

rearranging the links.  This is shown in Fig.  4.5. 

      The major limitation of linked lists is that the access to any arbitrary item is little 

cumbersome and time consuming.  Whenever we deal with affixed length list, it would be better 

to use an array rather than a linked list.  We must also note that a linked list will use more storage 

than an array with the same number of items.  This is because each item has an additional link 

field. 

4.9 TYPES OF LINKED LISTS 

There are different types of lined lists.  The one we discussed so far is known as linear singly 

linked list.  The other linked lists are: 

 Circular linked lists. 

49.00 

0 



577 

 

 Two-way or doubly linked lists. 

 Circular doubly linked lists. 

     The circular linked lists have no beginning and no end.  The last item points back to the first 

item.  The doubly linked list uses double set of pointers, one pointing to the next item and other 

pointing to the preceding item.  This allows us to traverse the list in either direction.  Circular 

doubly linked lists employs both the forward pointer and backward pointer in circular form.  Fig 

4.6 illustrates various kinds of linked lists. 

Item1        .  Item2        .  Item 3        . 

 

                           item to be inserted   

 

Item1        .  Item2        .  Item 3        . 

 

    

(a) Insertion 

(A record is created holding the new item and its next pointer is set to link it to the item, which is 

to follow it in the list.  The next pointer of the item which is to precede it must be modified to 

point to the new item.) 

 

Item1        .  Item2        .  Item 3        . 

     

    item to deleted 

 

Item1        .  Item2        .  

 

Item 3        . 

        X         

        X      .   
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(b) Deletion 

(The next pointer of the item immediately preceding the one to be deleted is attend and made to 

point to the item following the deleted item.) 

     Fig 4.5 Insertion into and deletion from a linked list 

4.10 POINTERS REVISITED 

The pointers are used extensively in processing of the linked lists, we shall briefly review 

some of their properties that are directly relevant to the processing of lists. 

     We know that variables can be declared as pointers, specifying the type of data item they can 

point to.  In effect, the pointer will hold the address of the data item and can be used to access its 

value.  In processing linked lists, we mostly use pointers of type structures. 

 

A        .  B        .  C        0 

(a) linear list 

 

A        .  B        .  C        . 

(b) Circular list      

        

   

 A 

 

       

. 

  

. 

B        

. 

  

     . 

C 0 

     ( c ) Two-way linked list 

 

  

 A          B          C      . 
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.  . . .      . 

  (d)Two-way circular list     

          

  Fig.4.6 Different types of linked lists 

     It is most important to remember the distinction between the pointer variable ptr, which 

contain the address of a variable, and the referenced variable *ptr, which denotes the value of 

variable to which ptr’s value points.  The following examples illustrate this distinction.  In these 

illustrations, we assume that the pointers p and q and the variables x and y are declared to be of 

same type. 

(a) Initialization 

 

p = &x;  

   p   points to                           x 

 

         q = &y 

            q   points to                                  y 

The pointer p contains the address of x and q contains the address of y. 

  *p = 100 and *q = 200 and p<>q 

(b) Assignment p = q 

The assignment p = q assigns the address of the variable y to the pointer variable p and therefore 

p now points to the variable y. 

 

p = q;  

            p                                     x 

                  .                     100 

                  .                     200 

                  .  100 
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   q           y 

Both the pointer variables point to the same variable. 

   *p = *q = 200 but x<> y 

( c ) Assignment *p = *q 

This assignment statement puts the value of the variable pointed to by q in the location of the 

variable pointed to by p. 

 

*p = *q; 

   p   points to                           x 

 

             

   q   points to                           y 

     The pointer p still points to the same variable x but the old value of x is replaced by 200 

(which is a pointed to by q). 

(d)Null pointers 

A special constant known as NULL pointer (0) is available in C to initialize pointers that point to 

nothing.  That is the statements 

p = 0; (or p = NULL;) p →          

q = 0; ( q = NULL;)  q → 

make the pointers p and q point to nothing.  They can be later used to point any values. 

                  .  200 

                  .               200 

                  .               200 

0 

0 
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     We know that a pointer must be initialized by assigning a memory address before using it.  

There are two ways of assigning memory address to a pointer. 

1. Assigning an existing variable address (static assignment) 

ptr = &count; 

2. Using a memory allocation function (dynamic assignment) 

ptr = (int *) malloc(sizeof(int)); 

4.11 CREATING A LINKED LIST 

We can treat a linked list as an abstract data type and perform the following basic 

operations: 

1. Creating a list. 

2. Traversing the list. 

3. Counting the items in the list. 

4. Printing the list (or sub list) 

5. Looking up an item for editing or printing. 

6. Inserting an item. 

7. Deleting an item. 

8. Concatenating two lists. 

In section 4.7 we created a two-element linked list using the structure variable names 

node1 and node2.  We also used the address operator & and member operators, and → for 

creating and accessing individual items.  The very idea of using a linked list is to avoid any 

reference to specific number of items in the list so that we can insert or delete items as and when 

necessary.  This can be achieved by using “anonymous” locations to store nodes.  Such locations 

are accessed not by name, but by means of pointers, which refer to them.  (For example, we must 

avoid using references like node1.age and node1. next →age.) 

      Anonymous locations are created using pointers and dynamic memory allocation 

functions such as malloc.  We use a pointer head to create and access anonymous nods.  

Consider the following: 



582 

 

struct linked_list 

{ 

int number; 

struct linked_list *next; 

}; 

typedef struct linked_list node; 

nod *head; 

head = (node *) malloc(sizeof(node)); 

     The struct declaration merely describes the format of the nodes and does not allocate storage.  

Storage space for a node is created only when the function malloc is called in the statement 

  head = (node *) malloc(sizeof(node)); 

This statement obtains a piece of memory that is sufficient to store a node and assigns its address 

to the pointer variable head.    This pointer indicates the beginning of the linked list. 

                   head      node 

   

                                                            number   next 

The following statements store values in the member fields: 

  head →number = 10; 

  head →next = NULL; 

               

 

 

.    
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head   node 

   

       number   next 

The second node can be added as follows: 

  head →number = (node *) malloc(sizeof(node)); 

  head →next →number = 20; 

  head→next →next = NULL; 

     Although this process can be continued to create any number of nodes, it becomes 

cumbersome and clumsy if nodes are more than two.  The above process may be easily 

implemented using both recursion and iteration techniques.  The pointer can be move from the 

current node to the next5 node by a self-replacement statement such as: 

   head = head → next; 

The program 4.3 shows creation of a complete linked list and printing of its contents using 

recursion. 

Program 4.3 Write a program to create a linear linked list interactively and print out the list and 

the total number of items in the list. 

The program shown in Fig 4.7 first allocates a block of memory dynamically for the first node 

using the statement 

   head = (node *) malloc(sizeof(node)); 

which returns a pointer to a structure of a type node that has been type defined earlier.  The 

linked list is then created by the function create.  The function requests for the number to be 

placed in the current node that has been created.  If the value assigned to the current node is -

999, then null is assigned to the pointer variable next and the list ends.  Otherwise, memory 

space is allocated to the next node using again the malloc function and the next value is placed 

.  10 0 
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into it.  Not that the function create calls itself recursively and the process will continue until we 

enter the number -999. 

     The items stored in the linked list are printed using the function print, which accept a pointer 

to the current node as an argument.  It is a recursive function and stops when it receives a NULL 

pointer Printing algorithm is as follows: 

1. Start with first node. 

2. while there are valid nodes left to print 

(a) print the current item; and  

(b) advance to next node. 

     Similarly, the function count counts the number of items in the list recursively and return the 

total number of items to the main function.  Note that the counti9ng does not include the item -

999(contained in the dummy node). 

Program 

#include<stdio.h> 

#include<stdlib.h> 

#define NULL 0 

struct linked_list 

{ 

int number; 

struct linked_list *next; 

}; 

typedef struct linked_list node;  /* node type defined */ 

main()  

{ 
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node *head; 

void create(node *p); 

int count(node *p); 

void pint(node *p); 

head = (node *)malloc(sizeof(node)); 

create(head); 

printf(“\n”); 

printf(“head”); 

printf(“\n”); 

printf(“\nNumber of items = %d \n”, count(head)); 

} 

void create(node *list) 

{ 

printf(“Input a number \n”); 

printf(“(type -999 at end): “); 

scanf(“%d”, &list → number  );  /* create current node*/ 

 

if(list→number = = -999) 

{ 

list→next = NULL; 

} 
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else  /*create next node*/ 

{ 

list→next = (node *)malloc(sizeof(node)); 

create(list→next); 

} 

return; 

} 

void print(node *list) 

{ 

if(list→next != NULL) 

{ 

printf(“%d→”, list→number);  /* print current item*/ 

 

if(list→nextnext == NULL) 

printf(“%d”, list→next→number); 

printf(list→next);  /* move to next item*/ 

} 

return; 

 

int count (node *list) 

{ 
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if(list→next = = NULL) 

return(0); 

else 

return(1+ count(list→next)); 

} 

Output 

Input a number 

(type -999 to end); 60 

Input a number 

(type -999 to end); 20 

Input a number 

(type -999 to end); 10 

Input a number 

(type -999 to end); 40 

Input a number 

(type -999 to end); 30 

Input a number 

(type -999 to end); 50 

Input a number 

(type -999 to end); -999 

60-→20-→10-→40-→30-→50-→-999 
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Number of items = 6 

  Fig 4.7 Creating a linear linked list 

4.12 INSERTING AN ITEM 

One of the advantage of linked lists is the comparative case with which new nodes can be 

inserted.  It requires merely resetting of two pointers (rather than having to move around a list of 

data as would be the case with arrays.) 

     Inserting a new item, say X, into the list has three situations: 

1. Insertion at the front of the list. 

2. Insertion in the middle of the list. 

3. Insertion at the end of the list. 

     The process of insertion precedes a search for the place of insertion.  The search involves in 

locating a node after which the new item is to be inserted. 

A general algorithm for insertion is as follows: 

Begin 

if the list is empty or 

the new node comes before the head node then, 

insert the new node as the head node, 

else 

if the new node comes after the last node, then 

insert the new node as the end node, 

else  

insert the new node in body of the list. 

End 
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Algorithm for placing the new item at the beginning of a linked list: 

1. Obtain space for new node. 

2. Assign data to the item field of new node. 

3. Set the next field of the new node to point to the start of the list. 

4. Change the head pointer to point to the new node. 

Algorithm for inserting the new node between two existing nodes, say, N1, and N2 

1. Set space for new node . 

2. Assign value to the item field of. 

3. Set the next field of X to point to node N2. 

4. Set the next field of N1 to point to X. 

Algorithm for inserting an item at the end of the list is similar to the one for inserting in the 

middle, except the next field of the new node is set to NULL (or set to point to9 a dummy or 

sentinel node, if it exists). 

Program 13.4 Write a function to insert a given item before a specified node known as key 

node. 

The function insert shown in Fig. 13.8 requests for the item to inserted as well as the “Key 

node”.  If the insertion happens to be at the beginning, then memory space is created for the new 

node, the value of new item is assigned to it and the pointer head is assigned to the next member.  

The pointer new, which indicates the beginning of the new node is assigned to head.  Note the 

following statements: 

 

new→number = x; 

new→next = head; 

head = new; 

node *insert(node *head) 

{ 
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node *find(node *p, int a); 

nod *new;  /* pointer to new node*? 

node *n1;  /* pointer to node preceding key node */ 

int key; 

int x; /* new item(number) to be inserted*/ 

printf(“Value of new item?”; 

scanf(“%d”, &x); 

printf(“Value of key item? (type -999 if last) “); 

scanf(“”%d”, &key); 

 

if(head→number = = key)  /* new node is first */ 

{ 

new = (node *)malloc(sizeof(node)); 

new→number = x; 

new→next = head; 

head = new; 

} 

else      /* find key node and insert new node */ 

{     /* before the key node*/ 

n1 = find(head, key);  /* find key node*/ 

if(n1 == NULL) 
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printf(“\n key is not found \n”); 

else     /* insert new node*/ 

     { 

new = (node *)malloc(sizeof(node)); 

new→number = x; 

new→next = n1→next; 

n1→next = new;  

     } 

} 

return(head); 

} 

node *find(node *lists, int key) 

{ 

if(list→next→number == key)    /* key found */ 

return(list); 

else 

if(list→next→number == NULL)    /* end */ 

return(NULL); 

else 

find(list→next, key); 

} 

   Fig 4.8 A function for inserting an item into linked list 
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     However, if the new item is to be inserted after an existing node, then use the function find 

recursively to locate the ‘key node’.  The new tem inserted before the key node using the 

algorithm discussed above.  This is illustrated as: 

Before insertion 

new = (node *)malloc(sizeof(node)); 

new→number = x;     key node 

              .                . 

 

         .n1      .  n1→next 

 

                                   .new 

     newnode  

After insertion 

new→next = n1→next; 

n1→next = new;         key node 

              .                . 

 

       . n1                  . n1→ next 

 

    

                new    

     new node 

            X  

          x           . 
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4.13 DELETING AN ITEM 

Deleting a node from the list is even easier than insertion, as only one pointer value needs to 

be changed.  Here again we have three situations. 

1. Deleting the first item. 

2. Deleting the last item. 

3. Deleting between two nodes in the middle of the list. 

In the first case, the head pointer is altered to point to the second item in the list.  In other two 

cases, the pointer of the item immediately preceding the one to be deleted is altered to point to 

the item following the deleted item.  The general algorithm for deletion is as follows: 

In the first case, the head pointer is altered to point to the second item in the list.  In other two 

cases, the pointer of the item immediately preceding the one to be deleted is altered to point to 

the item following the deleted item.  The general algorithm for deletion is as follows: 

begin 

if the list is empty, then, 

node cannot be deleted 

else 

if node to be deleted is the first node, then, 

make the head to point to second node, 

else 

delete the node from the body of the list. 

End 

The memory space of deleted node may be released for re-use.  As in the cased of insertion, the 

process of deletion also involves search for the item to be deleted. 
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Program 4.5 Write a function to delete a specified node. 

A function to delete a specified node is given in Fig. 13.9. The function first checks whether the 

specified item belongs to the first node.  If yes, then the pointer to the second node is temporarily 

assigned the pointer variable p, the memory space occupied by the first node is freed and the 

location of the second node is assigned to head.  Thus the previous second node becomes the 

first node of the new list. 

     If the item to be deleted is not the first one, then we use the find function to locate the 

position of “key node” containing the item to be deleted.  The pointers are interchanged with the 

help of a temporary pointer variable making the pointer in the preceding node to point to the 

node following the key node.  The memory space of key node that has been deleted if freed.  The 

figure below shows the relative position of the key node.   

      key node 

        .           .          . 

 

     .   n1       .  n1 →next           .   n1 

→next→next 

The execution of the following code deletes the key node. 

p = n1 →next→next; 

free(n1 →next); 

n1 →next = p; 

n1→next 

      key node 

        .           .          . 

    

     .  n1 

node *delete(node *head) 
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{ 

node *find(node *p, int a); 

int key;  /* item to be deleted */ 

node *n1; /* pointer to node preceding keynode */ 

node *p; /* temporary pointer */ 

printf(“\n what is the item (number) to be deleted ?”); 

scanf(“%d”, &key); 

if(head→number == key) /* first node to be deleted*/ 

{ 

p = head →next;   /* pointer to 2nd node in list */ 

free|(head);   /* release space of key node */ 

head = p;   /* make head to point to list node */ 

} 

else 

{ 

n1 = find(head, key); 

if(n1 == NULL) 

printf(“\n key not found \n”); 

else    /* delete key node */ 

{ 

p = n1→next→next);        /* pointer to node following the key node*/ 



596 

 

 

free(n1→next);   /* free key ;node */ 

n1→next = p;   /* establish link */ 

} 

} 

return(head); 

}    /* USE FUNCTION find() HERE*/ 

Fig 4.9 A function for deleting an item from linked list 

 

4.14 APPLICATION OF LINKED LISTS 

Linked lists concepts are useful to model many different abstract data types such as 

queues, stacks and trees. 

     If we restrict the process of insertion tone end of the list and deletions to the other end, then 

we have a model of a queue.  That is, we can insert an item at the rear and remove an item at the 

from (see Fig 4.10a). This obeys the discipline of “first in, first out” (FIFO).  There are many 

examples of queues in real-life applications.  

     If we restrict insertions and deletions to occur only at the beginning of list, then we model 

another data structure known as stack.  Stacks are also referred to as push-down lists.  An 

example of a stack is the “in” tray of a busy executive.  The files pileup in the tray, and whenever 

the ex3ecutive has time to clear the files, he takes it off from the top.  That is, files are added at 

the top and remove from the top (see Fig 4.10b).  Stacks are sometimes referred to as “last in, 

first out’’ (LIFO) structure. 

     Lists, queues and stacks are all inherently one-dimensional.  A tree represents a two-

dimensional linked list.  Trees are frequently encountered in everyday life.  One example is the 

organizational chart of a large company.  Another example is the chart of sports tournaments. 
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 IN  out 

  Rear       Front 

(a) Queue (repair shop) 

 

 

IN       OUT 

 

 

 

 

 

 

(b) Stack (executive tray) 

 

Fig. 4.10 Application of linked lists 

Car5  Car4  Car3  Car2  Car1 

File 4 
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File 2 
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UNIT - III

1 Introduction

In this chapter, we consider the problem of approximating a given function by

a class of simpler functions, mainly polynomials. There are two mass uses of

interpolation or interpolating polynomials. The first use is in reconstructing the

function f(x) when it is not given explicitly and only the values of f(x) and

/or its certain derivatives at a set of points, called nodes, tabular points or

arguments are known.The second use is to replace the function f(x) by an

interpolating polynomial P (x) so that many common operations such as deter-

mination of roots, differentiations and integrations etc.which are intended for the

function f(x) may be performed using P (x). In approximations, we measure the

deviation of the given function f(x) from the approximating polynomial P (x)

for all values of x over a given interval [a, b]. We first discuss the methods to

construct th interpolating polynomials P (x) to a given function f(x).

Definition 1.1. A polynomial P (x) is called an interpolating polynomial

if the values of P (x) and/or its certain order derivatives coincide with those of

f(x) and/or its same order derivatives at one or more tabular points.

Taylor Series: If the polynomial P (x) is written as the Taylor’s expansion, for

the function f(x) about a point x0, x0 ∈ [a, b], in the form

P (x) = f(x0) + (x − x0)f
′(x0) +

1

2!
(x − x0)

2f”(x0) + · · ·

+
1

n!
(x − x0)

nfn(x0) (1.1)
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then, P (x) may be regarded as an interpolating polynomial of degree n, satis-

fying the conditions

pk(x0) = fk(x0), k = 1, 2, . . . , n. (1.2)

The term

Rn =
1

(n + 1)!
(x − x0)

n+1f (n+1)(ζ), x0 < ζ < x (1.3)

which has been neglected in 1.1, is called the remainder or the truncation error.

The number of terms to be included in 1.1 may be determined by the acceptable

error. If this error is ǫ > 0 and the series is truncated at the term fn(x0), then

1
(n+1)!

|x − x0|n+1 |fn+1(x)| ≤ ǫ

or
1

(n + 1)!
|x − x0|n+1 Mn+1 ≤ ǫ (1.4)

where

Mn+1 = max
a≤x≤b

∣

∣f (n+1)(x)
∣

∣ .

Assume that the value of Mn+1 or its estimate is available.

For a given ǫ and x, 1.4 will determine n, and if n and x are prescribed,

it will determine ǫ. When both n and x are given, it will give an upper bound

on (x − x0), that is, it will give an interval about x0 in which this Taylor’s

polynomial approximates f(x) to the prescribed accuracy.

Example 1.2. Obtain the Taylor series approximation about x = 1, upto second

degree terms for the function f(x) = 1/(1 + x)2.

We have, f(x) = 1
(1+x)2

, f ′(x) = − 2x
(1+x)2

, f ′′(x) = −2(1−3x2)
(1+x2)3

,

f ′′′(x) = −24x(x2−1)
(1+x2)4

and f(1) = 1/2, f ′(1) = −1/2, f ′′(1) = 1/2. The Taylor

series approximation is given by

f(x) = f(1) + (x − 1)f ′(1) + 1
2
(x − 1)2f ′′(1)

599



= 1
2
− 1

2
(x − 1) + 1

4
(x − 1)2.

The error bound is given by

|R2| ≤ (x−1)3

3!
M3, where M3 = max

1≤x≤1.4
|f ′′′(x)| .

We obtain M3 = 24(1.4)(0.96)
16

= 2.016.

Therefore, |R2| ≤ (x−1)3

6
(2.016) = 0.336(x − 1)3.

Maximum absolute error occurs at x = 1.4 and this value is 0.0215.

Example 1.3. Obtain polynomial approximation P (x) to f(x) = e−x using the

Taylor’s exapnsion about x0 = 0 and determine

(i) x when the error in P (x) obtained from the first four terms only is to be

less than 10−6 after rounding

(ii) the number of terms in the approximation to find results correct to 10−10

for 0 ≤ x ≤ 1.

Solution: (i) From f(x) = e−x, we have

f (r)(x) = (−1)re−x and f (r)(0) = (−1)r, r = 0, 1, . . . . Therefore, we get

from 1.1, P (x) = 1 − x + x2

2
− x3

6
and from 1.4, x4M4 < 24 × 5 × 10−7 ,

where M4 = max
0≤x≤1

∣

∣f (4)(x)
∣

∣ = max
0≤x≤1

∣

∣e−x
∣

∣ = 1. Hence, we get x4 < 120× 10−7 or

x < 0.06.

(ii) From 1.4, we obtain 1
(n+1)!

< 5 × 10−11 which gives n ≥ 14.

2 Interpolation

In general, if their are n + 1 distinct points a ≤ x0 < x1 < x2 < . . . < xn ≤ b,

then the problem of interpolation is to obtain P (x) satisfying the conditions

(i) P (xi) = f(xi), i = 1, 2, . . . , n. (2.1)
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or

(ii) P (xi) = f(xi)

P ′(xi) = f ′(xi), i = 1, 2, . . . , n. (2.2)

The derivative conditions in equation 2.2 may be replaced by more general

derivative conditions involving higher order derivatives. The conditions equation

2.1 give rise to Lagrange/Newton interpolating polynomial and equation 2.2 give

rise to Hermite interpolating polynomial.

2.1 Lagrange and Newton Interpolation

Existence

We assume that we are given an interval [a, b] and a function f(x) which

is continuous on [a, b]. Further, we assume that we have n + 1 distinct points

a ≤ x0 < x1 < x2 < . . . < xn+1 < xn ≤ b of [a, b] and that the values of a

function f(x) are known at these points. We seek to find the polynomial

P (x) = a0 + a1x + a2x
2 + . . . + anxn (2.3)

which satisfies the conditions 2.1, that is

P (xi) = f(xi), i = 1, 2, . . . , n.

Substituting the conditions, we obtain the system of equations

a0 + a1x0 + a2x
2
0 + . . . + anxn

0 = f(x0)

a0 + a1x1 + a2x
2
1 + . . . + anxn

1 = f(x0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a0 + a1xn + a2x
2
n + . . . + anxn

n = f(x0)
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This system of equations has a unique solution,or the polynomial P (x) exists if

the Vandermonde’s determinant

V (x0, x1, . . . , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1

. . . . . .

. . . . . .

1 xn x2
n . . . xn

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

Let

V (x0, x1, . . . , xn−1, x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1

. . . . . .

. . . . . .

1 xn−1 x2
n−1 . . . xn

n−1

1 x x2 . . . xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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By the properties of the determinants, we get

V (x0, x1, . . . , xn−1, x) = (x − x0)(x − x1) . . . (x − xn−1)A

where A is a constant. Comparing the coefficients of xn, we get

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 . . . xn−1
0

1 x1 . . . xn−1
1

. . . . . .

. . . . . .

1 xn−1 . . . xn−1
n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= V (x0, x1, . . . , xn−1).

Therefore,

V (x0, x1, . . . , xn−1, x) = (x − x0)(x − x1) . . . (x − xn−1)V (x0, x1, . . . , xn−1).

Substituting x = xn, we obtain

V (x0, x1, . . . , xn) = V (x0, x1, . . . , xn−1)
n−1
∏

i=0

(xn − xi).

Applying recursively, we get

V (x0, x1, . . . , xn) =
n

∏

i,j=0;i>j

(xi − xj) 6= 0

since xi are distinct.

Uniqueness

To prove that the polynomial P (x) obtained above is unique, we assume that

there is another polynomial P ∗(x) which also satisfies
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P ∗(xi) = f(xi), i = 1, 2, . . . , n. (2.4)

Consider the polynomial

Q(x) = P (x) − P ∗(x). (2.5)

Since P (x) and P ∗(x) are both polynomials of degree ≤ n, Q(x) is also a

polynomial of degree ≤ n satisfying the conditions

Q(xi) = P (xi) − P ∗(xi) = 0, i = 1, 2, . . . , n. (2.6)

Therefore, Q(x) is a polynomial of degree ≤ n which has n+1 distinct roots

x0, x1, x2, . . . , xn. This implies that Q(x) ≡ 0, because a polynomial Q(x) of

degree n has exactly n roots, real or complex. Therefore, P ∗(x) = P (x).

Thus, the interpolating polynomials obtained in two different ways may be

different in form, but are identical otherwise. Depending on its form the polyno-

mial is called either the Lagrange interpolating polynomial or the Newton divided

differences interpolating polynomial.

We discuss now interpolations of various degrees.

2.2 Linear Interpolations

Here, n = 1 and we want to determine a polynomial

P (x) = a1x + a0 (2.7)

where a0 and a1 are arbitrary constants, which satisfies the interpolating con-

ditions f(x0) = P (x0) and f(x1) = P (x1). We have
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f(x0) = P (x0) = a1x0 + a0

f(x1) = P (x1) = a1x1 + a0 (2.8)

Eliminating a0 and a1 from 2.8, we obtain the required linear interpolating

polynomial as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P (x) x 1

f(x0) x0 1

f(x1) x1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (2.9)

which is shown graphically in Figure 3.1.

y = f(x)

y = p(x)

y

O x

(x0, f0)

(x1, f1)

x0 x1

Figure 3.1. Linear Interpolation

2.3 Lagrange Interpolation

We simplify 2.9 in terms of the first column and obtain

P (x)(x0 − x1) − f(x0)(x − x1) + f(x1)(x − x0) = 0
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or

P (x) =
x − x1

x0 − x1

f(x0) +
x − x0

x1 − x0

f(x1)

= l0(x)f(x0) + l1(x)f(x1) (2.10)

where

l0(x) =
x − x1

x0 − x1

, l1(x) =
x − x0

x1 − x0

.

The function l0(x) and l1(x) are called the Lagrange fundamental polynomials

and it can be verified that they satisfy the conditions

l0(x) + l1(x) = 1

l0(x0) = 1, l0(x1) = 0

l1(x1) = 0, l1(x1) = 1

or

li(xj) = δij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 i = j

0 i 6= j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.11)

The degree of the polynomials l0(x) and l1(x) is one.

The equation (2.10) is the linear Lagrange interpolating polynomial. Thus,

to obtain the Lagrange interpolating polynomial, we first determine Lagrange

fundamental polynomials, multiply by the corresponding function values and add

them together.
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2.4 Iterated Linear interpolation

We can write (2.10) as

P (x) =
1

x1 − x0

[(x1 − x0)f(x0) − (x1 − x0)f(x1)]

=
1

x1 − x0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0(x) x0 − x

I1(x) x1 − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.12)

where I0(x) = f(x0) and I1(x) = f(x1).

We may regard I0(x) and I1(x) as two independent zero degree interpolating

polynomials to f(x). It is easily verified that I0.1(x0) and I0.1(x1) = f(x1). The

equation (2.12) is called Aitken’s or iterated linear interpolating polynomials.

2.5 Newton’s Divided Difference Interpolation

We now, expand the determinant (2.9) in terms of the first row and get

P (x) = f(x0) + (x − x0)
f(x1) − f(x0)

x1 − x0

.

= f(x0) + (x − x0)f [x0, x1] (2.13)

where
f(x1) − f(x0)

x1 − x0

= f [x0, x1]. (2.14)

The ratio f [x0, x1] is called the first divided difference of f(x) relative to x0

and x1. We may write (2.13) as

P (x) − f(x0)

x − x0

= f [x0, x1]. (2.15)
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The equation (2.13) or (2.15) is the linear Newton interpolating polynomial

with divided differences.

Example 2.1. Given f(2) = 4, f(2.5) = 5.5, find the linear interpolating poly-

nomial using (i) Lagrange interpolation, (ii) Aitken’s iterated interpolating and

(iii) Newton’s divided difference interpolation. Hence, find an approximate value

of f(2.2).

We have x0 = 2, x1 = 2.5, f(x0) = 4 and f(x1) = 5.5.

(i) The Lagrange fundamental polynomials are given by

l0(x) = x−x1

x0−x1
= x−2.5

(−0.5)
, l1(x) = x−x0

x1−x0
= x−2

0.5
, and

P1(x) = l0(x)f(x0) + l1(x)f(x1)

= −2(x − 2.5)(4) + 2(x − 2)(5.5) = 3x − 2.

Hence,

f(2.2) ≈ P1(2.2) = 3(2.2) − 2 = 4.6.

(ii) From (2.12) , we obtain

P1(x) =
1

x1 − x0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0(x) x0 − x

I1(x) x1 − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

0.5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 2 − x

5.5 2.5 − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 3x − 2.

P1(2.2) = 4.6.

(iii) We have f [x0, x1] = f(x0)−f(x1)
x0−x1

= 5.5−4
0.5

= 3, and

P1(x) = f(x0) + (x − x0)f [x0, x1]
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= 4 + (x − 2)3 = 3x − 2.

P1(2.2) = 4.6.

Truncation Error Bounds

The polynomial P (x) coincides with the function f(x) at x0 and x0 and x1,

and it deviates at all other points, in the interval (x0, x1) as shown in Figure

3.1. This deviation is called the truncation error and may be written as

E1(f ; x) = f(x) − P (x). (2.16)

We will now derive an expression for E1(f ; x) for x ∈ [x0, x1]. We use the

following result.

Theorem 2.2. (Rolle) If g(x) is a continuous function on some interval [a, b]

and differentiable on (a, b) and if g(a) = 0, g(b) = 0, then there is at least one

point ξ inside (a, b) for which g′(ξ) = 0.

We notice that if x = x0 or x = x1 then E1(f ; x) = 0. If x ∈ (x0, x1), then

for this x we define a function g(t) as

g(t) = f(t) − P (t) − [f(x) − P (x)]
(t − x0)(t − x1)

(x − x0)(x − x1)
. (2.17)

It is easy to verify that g(t) = 0 at the three distinct points t = x0, t = x1

and t = x. The function g(t) satisfies the conditions of the Rolle’s theorem.

Applying the Rolle’s theorem on the intervals (x0, t) and (t, x1) separately,

we get

g′(ξ1) = 0, x0 < ξ1 < t and g′(ξ2) = 0, t < ξ2 < x1 .
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Now, g′(t) also satisfies the conditions of the Rolle’s theorem. Applying Rolle’s

theorem for g′(t) on the interval (ξ1, ξ2), we obtain g′′(ξ) = 0, ξ1 < ξ < ξ2, or

x0 < ξ < x1. Differentiating (2.17) twice with respect to t, we obtain

g′′(t) = f ′′(t) − 2(f(x) − p(x))

(x − x0)(x − x1)
. (2.18)

Setting g′′(t) = 0 and solving (2.18) for f(x) we obtain

f(x) = P (x) +
1

2
(x − x0)(x − x1)f

′′(ξ). (2.19)

Therefore, the truncation error in linear interpolation is given by

E1(f ; x) =
1

2
(x − x0)(x − x1)f

′′(ξ). (2.20)

If we can detremine a bound for f ′′(x) in [x0, x1], i.e.

|f ′′(x)| ≤ M2, x ∈ [x0, x1]

then |f(x) − P (x)| = |1
2
(x − x0)(x − x1)f

′′(ξ)|

≤ 1

2
max

x0≤x≤x1

|(x − X0)(x − x1)f
′′(ξ)|

≤ 1

2
max

x0≤x≤x1

|(x − x0)(x − x1)|M2. (2.21)

Let w(x) = (x − x0)(x − x1). Setting w′(x) = 0, we obtain the critical point

of w(x) as x = (x0 + x1)/2. Hence, the maximum value of |(x − x0)(x − x1)|
occurs at x = (x0 + x1)/2 and 2.21 becomes

|f(x) − P (x)| ≤ 1

8
(x1 − x0)

2M2. (2.22)

Equation (2.22) can be used to construct a table of values for a function f(x)

for equally spaced nodal points xi = a + ih, i = 0, 1, . . . n, h = (b− a)/n; so that
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the maximum absolute truncation error using the linear interpolating polynomial

P (x) is lass than a given error tolerance ǫ > 0. Since x1 −x0 = h, we have from

2.22
h2

8
max |f ′′(x)| ≤ ǫ. (2.23)

Example 2.3. Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find

an approximate value of sin(0.15) by Lagrange interpolation. Obtain a bound

on the truncation error.

We have

P1(0.15) =
0.15 − 0.2

0.1 − 0.2
(0.09983) +

0.15 − 0.1

0.2 − 0.1
(0.19867)

= (0.5)(0.09983) + (0.5)(0.19867) = 0.14925

The truncation error is

E1(f ; x) = (x−0.1)(x−0.2)
2

(−sinξ)

where 0.1 < ξ < 0.1.

The maximum value of |sinξ|, ξ ∈ [0.1, 0.2] is sin(0.2) = 0.19867.

Thus, |E1(f ; x)| ≤ | (0.15−0.1)(0.15−0.2)
2

|(0.19867)

= (0.19867)(0.00125) ≈ 0.00025.

Example 2.4. Determine the stepsize h that can be used in the tabulation of

f(x) = sinx in the interval [1, 3] so that the linear interpolation will be correct

to four decimal places after rounding.

We have f(x) = sinx,

f ′(x) = cosx,
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f ′′(x) = −sinx,

and max | − sinx| = 1. Hence we obtain

h2

8
≤ 5 × 10−5

This gives h ≤ 0.02.

Example 2.5. The function f (x) = sin x is defined on the interval [1, 3] .

(i) Obtain the Lagrange linear interpolating polynomial in this interval and

find the bound on the truncation error. Obtain the approximate values of f (1.5)

and f (2.5) .

(ii) Divide the interval [1, 3] into two subintervals [1, 2] and [2, 3] . Obtain

the Lagrange linear interpolating polynomial in each subinterval and find the

bound on the truncation error. Hence find the approximate values of f (1.5) and

f (2.5) .

Compare with the exact values.

We have sin 1 = 0.8415 , sin 2 = 0.9093 , sin 3 = 0.1411 and f ′′(x) = − sin x .

Now, on the interval [1, 3] , we obtain

P11 (x) = x−3
1−3

sin 1 + x−1
3−1

sin 3

= −1
2
(x − 3) (0.8415) + 1

2
(x − 1) (0.1411)

= −0.3502x + 1.1917 .

|E11(x)| ≤ 1
2

max
1≤x≤3

|(x − 1)(x − 3)| max
1≤x≤3

|sin x| = 0.5 .

We find that f(1.5) ≈ P11(1.5) = 0.6664 and f(2.5) ≈ P11(2.5) = 0.3162 .

On the interval [1, 2] , we obtain

612



P12 (x) = x−2
1−2

sin 1 + x−1
2−1

sin 2

= − (x − 2) (0.8415) + (x − 1) (0.9093)

= −0.0678x + 0.7737 .

|E12(x)| ≤ 1
2

max
1≤x≤2

|(x − 1)(x − 2)| max
1≤x≤2

|sin x| =
1

8
= 0.125 .

We find that f(1.5) ≈ P12(1.5) = 0.8754 .

On the interval [2, 3] , we obtain

P13 (x) = x−3
2−3

sin 2 + x−2
3−2

sin 3

= − (x − 3) (0.9093) + (x − 2) (0.1411)

= −0.7682x + 2.4457 .

|E13(x)| ≤ 1
2

max
2≤x≤3

|(x − 2)(x − 3)| max
2≤x≤3

|sin x| =
1

8
sin 2 = 0.1137 .

We find that f(2.5) ≈ P13(2.5) = 0.5252 .

We note that the exact values are

f(1.5) = sin 1.5 = 0.9975 and f(2.5) = sin 2.5 = 0.5985 .

2.6 Quadratic Interpolation

Here, n = 2 and we want to determine a polynomial

P2(x) = a0 + a1x + a2x
2

where a0 , a1 and a2 are arbitrary constants,which satisfies the interpolatory

conditions f(x0) = P2(x0) , f(x1) = P2(x1) and f(x2) = P2(x2) .

We have

f(x0) = a0 + a1x0 + a2x
2
0
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f(x1) = a0 + a1x1 + a2x
2
1

f(x2) = a0 + a1x2 + a2x
2
2

Eliminating a0 , a1 and a2 , we obtain the required quadratic interpolating

polynomial as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P2(x) 1 x x2

f(x0) 1 x0 x2
0

f(x1) 1 x1 x2
1

f(x2) 1 x2 x2
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Expanding the determinant, we obtain

P2(x)D0 − f(x0)D1 + f(x1)D2 − f(x2)D3 = 0

where

D0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (x0 − x1)(x1 − x2)(x2 − x0)
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D1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x x2

1 x1 x2
1

1 x2 x2
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (x − x1)(x1 − x2)(x2 − x)

D2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x x2

1 x0 x2
0

1 x2 x2
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (x − x0)(x0 − x2)(x2 − x)

D3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x x2

1 x0 x2
0

1 x1 x2
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (x − x0)(x0 − x1)(x1 − x)

Therefore, P2(x) = D1

D0
f(x0) − D2

D0
f(x1) + D3

D0
f(x3)

= (x−x1)(x−x2)
(x0−x1)(x0−x2)

f(x0) + (x−x0)(x−x2)
(x1−x0)(x1−x2)

f(x1) + (x−x0)(x−x1)
(x2−x0)(x2−x1)

f(x2)

= l0(x)f(x0) + l1(x)f(x1) + l2(x)f(x2) .

The truncation error of the Lagrange quadratic interpolating polynomial is

given by
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E2(f ; x) = f(x) − P2(x) .

We note that E2(f ; x) = 0 for x = x0, x1 and x2 . If x ∈ (x0, x2) , then for

this value of x we define a function g(t) as

g(t) = f(t) − P2(t) − [f(x) − P2(x)] (t−x0)(t−x1)(t−x2)
(x−x0)(x−x1)(x−x2)

It is easy to show that g(t) = 0 at four distinct points t = x0, x1, x2 and

x . The function g(t) satisfies the conditions of Rolle’s theorem. Applying the

Rolle’s theorem repeatedly for g(t) , g′(t) and g′′(t) , we obtain g′′′(ξ) = 0 , where

ξ is some point such that min(x0, x1, x2, x) < ξ < max(x0, x1, x2, x) .

Differentiating g(t) three times with respect to t , we get

g′′′(t) = f ′′′(t) − (3!)[f(x)−P2(x)]
(x−x0)(x−x1)(x−x2)

Setting g′′′(ξ) = 0 and solving for f(x) , we get

f(x) = P2(x) + 1
3!

(x − x0)(x − x1)(x − x2)f
′′′(ξ) .

Hence, the truncation error in the Lagrange quadratic interpolation is given by

‘ E2(f ; x) = f(x) − P2(x) = 1
3!

(x − x0)(x − x1)(x − x2)f
′′′(ξ) .

and its bound is

|f(x) − P2(x)| ≤ 1
6
M3

[

max
x0≤ x≤ x2

|(x − x0)(x − x1)(x − x2)|
]

where M3 = max
x0≤ x≤ x2

|f ′′′(x)| .

2.7 Higher Order Interpolation

The Lagrange fundamental polynomials of degree n based on n + 1 distinct

points a ≤ x0 < x1 < x2 < · · · < xn ≤ b and which satisfy (2.11) can be
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written in the form

li(x) =
(x − x0)(x − x1) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x0)(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
(2.24)

i = 0, 1, . . . , n .

An alternative form of (2.24) is given by

li(x) = w(x)
(x−xi)w′(xi)

where

w(x) = (x − x0)(x − x1) · · · (x − xn)

w′(xi) = (xi − x0)(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

and a prime represents differentiation with respect to x . Thus the polynomial

P (x) =
n

∑

i=0

li(x)f(xi) (2.25)

where li(x) are given by (2.24), is the Lagrange interpolating polynomial of

degree n .

The truncation error in the Lagrange interpolation is given by

En(f ; x) = f(x) − P (x)

. Since En(f ; x) = 0 at x = xi , i = 0, 1, . . . , n , then for x ∈ [a, b] and x 6= xi ,

we define a function g(t) as

g(t) = f(t) − P (t) − [f(x) − P (x)]
(t − x0)(t − x1) · · · (t − xn)

(x − x0)(x − x1) · · · (x − xn)
(2.26)

We observe that g(t) = 0 at t = x and t = xi , i = 0, 1, . . . , n .

Applying the Rolle’s theorem repeatedly for g(t) , g′(t), . . . and g(n)(t) , we

obtain g(n+1)(ξ) = 0 where ξ is some point such that min(x0, x1, . . . , xn, x) <

ξ < max(x0, x1, . . . , xn, x) .
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Differentiating (2.26) n + 1 times with respect to t , we get

g(n+1)(t) = f (n+1)(t) − (n + 1)! [f(x) − P (x)]

(x − x0)(x − x1) · · · (x − xn)
(2.27)

Setting g(n+1)(ξ) = 0 and solving (2.27) for f(x) , we get

f(x) = P (x) + w(x)
(n+1)!

f (n+1)(ξ) .

Hence the truncation error in Lagrange interpolation is given by

En(f ; x) =
w(x)

(n + 1)!
f (n+1)(ξ). (2.28)

2.8 Iterated Interpolation

The iterated form of the Lagrange interpolation can be written as

I0,1,...,n(x) =
1

xn − xn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0,1,...,n−1(x) xn−1 − x

I0,1,...,n−2,n(x) xn − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.29)

The interpolating polynomials appearing on the right side of (2.29) are any

two independent (n − 1) th degree polynomials which could be constructed in

a number of ways. In the Aitken method, we construct the successive iterated

interpolations as given in Table 1.1.
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Table 1.1 Iterated Interpolation

x0 x0 − x I0(x)

x1 x1 − x I1(x) I0,1(x)

x2 x2 − x I2(x) I0,2(x) I0,1,2(x)

. . . . .

. . . . .

. . . . .

xn−1 xn−1 − x In−1(x) I0,n−1(x) I0,1,n−1(x)

xn xn − x In(x) I0,n(x) I0,1,n(x). . . I0,1,2,...,n(x)

where Ii(x) = f(xi) and

I0,1,n(x) =
1

xn − x1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0,1(x) x1 − x

I0,n(x) xn − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The bound on the error is given by

|En(f ; x)| = 1
(n+1)!

|w(x)|
∣

∣f (n+1)(ξ)
∣

∣ .
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≤ 1
(n+1)!

Mn+1

[

max
x0≤ x≤ xn

|w(x)|
]

where

Mn+1 = max
x0≤ x≤ xn

∣

∣f (n+1)(x)
∣

∣ (2.30)

Example 2.6. Given that f(0) = 1 , f(1) = 3 , f(3) = 55 , find the unique

polynomial of degree 2 or less, which fits the given data. Find the bound on the

error.

We have x0 = 0 , x1 = 1 , x2 = 3 , f0 = 1 , f1 = 3 and f2 = 55 . The

Lagrange fundamental polynomials are given by

l0(x) = (x−x1)(x−x2)
(x0−x1)(x0−x2)

= (x−1)(x−3)
(−1)(−3)

= 1
3
(x2 − 4x + 3)

l1(x) = (x−x0)(x−x2)
(x1−x0)(x1−x2)

= x(x−3)
(1)(−2)

= 1
2
(3x − x2)

l2(x) = (x−x0)(x−x1)
(x2−x0)(x2−x1)

= x(x−1)
3(2)

= 1
6
(x2 − x) .

Hence, the Lagrange quadratic interpolating polynomial is given by

P2(x) = l0(x)f0 + l1(x)f1 + l2(x)f2

= 1
3
(x2 − 4x + 3) + 3

2
(3x − x2) + 55

6
(x2 − x) .

= 8x2 − 6x + 1 .

We have,

|E2(f ; x)| ≤ 1
6

M3

[

max
0≤ x≤ 3

|x(x − 1)(x − 3)|
]

= 1
6
(2.1126)M3 = 0.3521 M3

where M3 = max
0≤ x≤ 3

|f ′′′(x)| and since the maximum of |x(x − 1)(x − 3)| oc-

curs at x = 2.2152 .

Example 2.7. The following values of the function f(x) = sin x + cos x , are
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given

x 100 200 300

f(x) 1.1585 1.2817 1.3660

Construct the quadratic interpolating polynomial that fits the data. Hence,

find f(π/12) . Compare with the exact value. Since the values of f at π/12

radians is required, we convert the data into radian measure. We have x0 =

100 = π
18

= 0.1745 , x1 = 200 = π
9

= 0.3491 , x2 = 300 = π
6

= 0.5236 .

The Lagrange fundamental polynomials are given by

l0(x) = (x−x1)(x−x2)
(x0−x1)(x0−x2)

= (x−0.3491)(x−0.5236)
(−0.1746)(−0.3491)

= 16.4061(x2 − 0.8727x + 0.1828)

l1(x) = (x−x0)(x−x2)
(x1−x0)(x1−x2)

= (x−0.1745)(x−0.5236)
(0.1746)(−0.1745)

= −32.8616(x2 − 0.6981x + 0.0914)

l2(x) = (x−x0)(x−x1)
(x2−x0)(x2−x1)

= (x−0.1745)(x−0.3491)
(0.3491)(0.1745)

= 16.4155(x2 − 0.5236x + 0.0609) .

Hence, the Lagrange quadratic interpolating polynomial is given by

P2(x) = 16.4061(x2 − 0.8727x + 0.1828)(1.1585)

−32.8616(x2 − 0.6981x + 0.0914)(1.2817)

+16.4155(x2 − 0.5236x + 0.0609)(1.3660)

= −0.6887x2 + 1.0751x + 0.9903 .

Hence, f(π/12) = f(0.2618) = 1.2246 . The exact value is f(0.2618) =
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sin (0.2618) + cos (0.2618) = 1.2247 .

2.9 Newton’s Divided Difference Interpolation

The linear Newton divided difference interpolation (2.13) is easy to generalize.

We define the higher order divided differences as

f [x0, x1, x2] = f [x1, x2]−f [x0, x1]
x2−x0

= 1
(x2−x0)

[

f(x2)−f(x1)
x2−x1

− f(x1)f (x0)

x1−x0

]

= f(x2)
(x2−x0)(x2−x1)

− f(x1)
(x2−x0)

[

1
x2−x1

+ 1
x1−x0

]

+ f(x0)
(x2−x0

)(x1−x0)

= f(x0)
(x0−x1)(x0−x2)

+ f(x1)
(x1−x0)(x1−x2)

+ f(x2)
(x2−x0)(x2−x1)

f [x0, x1, x2, ..., xk−1, xk] = f [x1,x2,...,xk]−f [x0,x1,...,xk−1]

xk−x0

k = 3, 4, ..., n .

In terms of function values, the n th divided difference can be written as

f [x0, x1, x2, . . . , xn] =
n

∑

i=0

f(xi)
n

∏

j=0, i6=j

(xi − xj)

(2.31)

The divided differences may be calculated with the help of Table 3.2.
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Table 1.2 Divided Difference (d.d) Table

first d.d second d.d third d.d

x0 f [x0]

x1 f [x1] f [x0, x1]

x2 f [x2] f [x1, x2] f [x0, x1, x2]

x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]

Note that

f [x0, x1] = f [x1, x0]

f [x0, x1, x2] = f [x2, x1, x0] etc.

The interpolating polynomaial Pn(x) , interpolating at the n+1 distinct points

x0, x1, . . . , xn can also be written as

Pn(x) = a0+(x−x0)a1+(x−x0)(x−x1)a2+· · ·+(x−x0) · · · (x−xn−1)an. (2.32)

Substituting successively x = x0 , x = x1 ,. . . , x = xn , we obtain

Pn(x0) = f [x0] = a0 ,

Pn(x1) = f [x1] = a0 + (x1 − x0)a1 = f [x0] + (x1 − x0)a1 ,

or a1 = f [x1]−f [x0]
x1−x0

= f [x0, x1] ,

Pn(x2) = f [x2] = a0 + (x2 − x0)a1 + (x2 − x0)(x2 − x1)a2

or a2 = 1
(x2−x0)(x2−x1)

[

f [x2] − f [x0] − (x2 − x0)
{

f [x1]−f [x0]
x1−x0

}]
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= f [x0]
(x0−x1)(x0−x2)

+ f [x1]
(x1−x0)(x1−x2)

+ f [x2]
(x2−x0)(x2−x1)

= f [x0, x1, x2] .

Using induction, we can prove that

an = f [x0, x1, . . . , xn] . (2.33)

The divided difference interpolating polynomial becomes

Pn(x) = f [x0] + (x− x0)f [x0, x1] + · · ·+ (x− x0) · · · (x− xn−1)f [x0, x1, . . . , xn] .

(2.34)

Note that, since the interpolating polynomial is unique, Lagrange and divided

difference polynomials are two different forms of the same polynomial.

Example 2.8. Find the unique polynomial of degree 2 or less, such that f(0) =

1 , f(1) = 3 , f(3) = 55 , using

(i) the iterated interpolation

(ii) the Newton divided difference interpolation.

(i) the iterated interpolating polynomial becomes

I0,1(x) =
1

(1 − 0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 − x

3 1 − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1 + 2x

I0,2(x) =
1

(3 − 0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 − x

55 3 − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1 + 18x
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I0,1,2(x) =
1

(3 − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0,1(x) 1 − x

I0,2(x) 3 − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1
3
[(1 + 2x)(3 − x) − (1 − x)(1 + 18x)]

= 8x2 − 6x + 1 .

(ii) The divided differences are given by

f [0, 1] = 3−1
1−0

= 2 , f [1, 3] = 55−3
3−1

= 26 , f [0, 1, 3] = 26−2
3−0

= 8 .

The Newton divided difference interpolating polynomial becomes

P2(x) = f [0] + (x − 0)f [0, 1] + (x − 0)(x − 1)f [0, 1, 3]

= 1 + 2x + 8x(x − 1) = 8x2 − 6x + 1 .

Example 2.9. Construct the divided difference table for the data

x 0.5 1.5 3.0 5.0 6.5 8.0

f(x) 1.625 5.875 31.0 131.0 282.125 521.0

Hence, find the interpolating polynomial and an approximation to the value of

f(7) .

We have the following divided difference table
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x f(x) first order d.d second order d.d third order d.d fourth order d.d

0.5 1.625

4.25

1.5 5.875 5.0

16.76 1.0

3.0 31.000 9.5 0

50.00 1.0

5.0 131.000 14.5 0

100.75 1.0

6.5 282.125 19.5

159.25

8.0 521.000

We write the divided difference interpolating polynomial as

f(x) = f [x0] + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]
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+(x − x0)(x − x1)(x − x2)f [x0, x1, x2, x3]

= 1.625+(x−0.5)(4.25)+5(x−0.5)(x−1.5)+(x−0.5)(x−1.5)(x−3.0)

= (1.625−2.125+3.75−2.25)+x(4.25−10.0+6.75)+x2(5−5)+x3

= x3 + x + 1 .

Hence, f(7.0) = 351 .

Example 2.10. Calculate the nth divided difference of 1/x , based on the points

x0, x1, x2, ..., xn .

We have f [x0, x1] = (1/x1)−(1/x0)
x1−x0

= − 1
x0x1

.

f [x0, x1, x2] = [−1/(x1x2)+1/x0x1)]
x2−x0

= − x2−x0

x0x1x2(x2−x0)
= (−1)2

x0x1x2

We shall show that f [x0, x1, ..., xn] = (−1)n

x0x1...xn
.

Let the result be true for x0, x1, ..., xk . That is

f [x0, x1, ..., xk] = (−1)k

x0x1...xk
.

Then,

f [x0, x1, ..., xk+1] = 1
(xk+1−x0)

{f [x1, x2, ..., xk+1] − f [x0, x1, ..., xk]}

= 1
(xk+1−x0)

[

(−1)k

x1x2...xk+1
− (−1)k

x0x1...xk

]

= (−1)k+1

x0x1...xk+1

Hence, by induction, we obtain

f [x0, x1, ..., xn] = (−1)n

x0x1...xn
.
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3 Numerical solutions for differential equations

3.1 Taylor Series Method

The fundamental numerical method for the solution of u′ = f(t, u), u(t0) =

η0, t ∈ [t0, b] , is the Taylor series method.

We assume that the function u(t) can be expanded in Taylor series about any

point tj , that is,

u(t) = u(tj) + (t − tj)u
′(tj) +

1

2!
(t − tj)

2u′′(tj) + · · · + 1

p!
(t − tj)

pu(p)(tj)+

1

(p + 1)!
(t − tj)

p+1u(p+1)(tj + θh). (3.1)

This expansion holds for t ∈ [t0, b] and 0 < θ < 1 .

Substituting t = tj+1 in (3.1), we get

u(tj+1) = u(tj) + hu′(tj) + h2

2!
u′′(tj) + ... + 1

p!
hpu(p)(tj)

+ 1
(p+1)!

hp+1u(p+1)(tj + θh)

= u(tj) + hφ(tj, u(tj), h) + 1
(p+1)!

hp+1u(p+1)(tj + θh)

where hφ(tj, u(tj), h) = hu′(tj) + h2

2!
u′′(tj) + ... + hp

p!
u(p)(tj) .

Denote by hφ(tj, uj, h) , the value obtained from hφ(tj, u(tj), h) by using an

approximate value uj in place of the exact value u(tj) . Neglecting the error

term, we have the method

uj+1 = uj + hφ(tj, uj, h), j = 0, 1, . . . , N − 1 (3.2)

to approximate u(tj+1) . The error or the truncation error of the method is given
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by

Tj+1 =
1

(p + 1)!
hp+1u(p+1)(tj + θh) (3.3)

The method (3.2) is called the Taylor series method of order p . Substituting

p = 1 in (3.2) we get

uj+1 = uj + hu′
j = uj + hf(tj, uj) .

which is the Euler method. Therefore, Euler method can also be called as the

Taylor series method of order 1.

To apply (3.2), it is neccessary to know u(tj), u′(tj), . . . , u
(p)(tj) . If tj and

u(tj) are known, then the derivatives can be calculated as follows:

First, the known values tj and u(tj) are substituted into the differential equa-

tion to give

u′(tj) = f(tj, u(tj)) .

Next, the differential equation u′ = f(t, u) is differentiated to obtain expres-

sions for the higher order derivatives of u(t) . Thus, we have

u′ = f(t, u) .

u′′ = f1 + ffu

u′′′ = fu + 2fftu + f 2fuu + fu(ft + ffu)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where ft , fu, . . . represents the partial derivatives of f with respect to t and

u and so on. The values u′′(tj) , u′′′(tj), . . . can be computed by substituting

t = tj . Therefore, if tj and u(tj) are known exactly, then (3.2) can be used to

compute uj+1 with an error
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hp+1

(p+1)!
u(p+1)(tj + θh) .

The number of terms to be included in (3.2) is fixed by the permissible error.

If this error is ǫ and the series is truncated at the term u(p)(tj) then

hp+1
∣

∣u(p+1)(tj + θh)
∣

∣ < (p + 1)!ǫ

or

hp+1
∣

∣f (p)(tj + θh)
∣

∣ < (p + 1)!ǫ. (3.4)

We assume that an estimate of
∣

∣f (p)(tj + θh)
∣

∣ is known.

For a given h and ǫ , (3.4) will determine p , and if p and ǫ are specified,

then it will give an upper bound on h .

Since tj +θh is not known,
∣

∣f (p)(tj + θh)
∣

∣ in (3.4) is replaced by its maximum

value in [t0, b] . A way of determining this value is as follows. Write one more

non-vanishing term in the series than is requried and then differentiate this series

p times. The maximum value of this quantity in [t0, b] gives a rough required

bound.

Example 3.1. Given the initial value problem

u′ = t2 + u2, u(0) = 0

determine the first three non-zero terms in the Taylor series for u(t) and hence

obtain the value for u(1) . Also determine t when the error in u(t) obtained

from the first two non-zero terms is to be less than 10−6 after rounding.

We have

u(0) = 0, u′(0) = 0

u′′ = 2t + 2uu′, u′′(0) = 0

u′′′ = 2 + 2(uu′′ + (u′)2), u′′′(0) = 2
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u(4) = 2(uu′′′ + 3u′u′′), u(4)(0) = 0

u(5) = 2[uu(4) + 4u′u′′′ + 3(u′′)2], u(5)(0) = 0

u(6) = 2(uu(5) + 5u′u(4) + 10u′′u′′′), u(6)(0) = 0

u(7) = 2(uu(6) + 6u′u(5) + 15u′′u(4) + 10(u′′′)2), u(7)(0) = 80

u(8) = u(9) = u(10) = 0

u(11) = 2[uu(10) + 10u′u(9) + 45u′′u(8) + 120u′′′u(7) + 210u(4)u(6) + 126(u(5))2]

u(11)(0) = 38400

Thus the Taylor series for u(t) becomes

u(t) = 1
3
t3 + 1

63
t7 + 2

2079
t11 .

The approximate value of u(1) is given by

u(1) = 1
3

+ 1
63

+ 2
2079

= 0.350168 .

If only the first two terms are used, then the value of t is obtained from

∣

∣

2
2079

t11
∣

∣ < 0.5 × 10−7

Solving, we get t = 0.41 .

Example 3.2. Find the three term Taylor series solution for the third order

initial value problem

W ′′′ + WW ′′ = 0 , W (0) = 0 , W ′(0) = 0 , W ′′(0) = 1 .

Find the bound on the error for t ∈ [0, 0.2] .

We find

W ′′′ = −WW ′′, W ′′′(0) = 0

W (4) = −(WW ′′′ + W ′W ′′), W (4)(0) = 0
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W (5) = −[WW (4) + 2W ′W ′′′ + (W ′′)2], W (5)(0) = −1

W (6)(0) = 0, W (7)(0) = 0, W (8)(0) = 11

W (9)(0) = W (10)(0) = 0, W (11)(0) = −375 .

The Taylor series solution is

W (t) = t2

2!
− t5

5!
+ 11

8!
t8 + E8

where |E8| ≤ max
∣

∣W (9)(t)
∣

∣

t9

9!
.

Writting the next term, we have

W (t) = t2

2!
− t5

5!
+ 11

8!
t8 − 375

11!
t11

We find W (9)(t) = −375
2

t2 and max
0≤t≤0.2

∣

∣W (9)(t)
∣

∣ = 7.5 .

Hence, |E8| ≤ 7.5(0.2)9

9!
≤ (1.06)10−11 .

3.2 Picard’s Method

Integrating the differential equation dy
dx

= f(x, y), x > x0 from x0 to a general

point x and using y = y0 , at x = x0 , the problem is transformed to an integral

equation,

y(x) − y(x0) =

x
∫

x0

f(x, y)dx. (3.5)

Solution to (3.5) is obtained in an iterative manner according to the scheme,

y(n+1)(x) = y0 +

x
∫

x0

f [x, y(n)(x)]dx, n = 0, 1, 2, . . . (3.6)

where y(n)(x) denotes n th iteration and y0 = y(x0) . To start the process, the

initial approximation y(0)(x) may be taken as y0 .
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Since the solution is obtained as a function of x , the difference between two

successive approximations will also be a function of x . Hence the accuracy of

the solution will be dependent on the value of x , and the solution obtained will

be valid for certain range of x , for the prescribed accuracy. It may be mentioned

that if the solution is obtained in the form of a series with alternating signs, the

first neglected term gives the magnitude of the maximum error when the series

converges uniformly in a certain interval.

The iterative process converges to the true solution under certain conditions.

The major drawback of the method is that integration has to be performed at

each stage which may not be possible when the integrand is complicated. The

method is not a numerical method; it may be called semi-analytical or approimate

analytical method.

Example 3.3. Find the approximate solution by Picard’s method for the differ-

ential equation,

dy
dx

= x2 − y, y(0) = 1

which is correct within an accuracy of 10−3 for 0 ≤ x ≤ 0.2 .

Solution: The iterative scheme for the above problem is,

y(n+1) − 1 =
∫ x

0
(x2 − y(n))dx .

Taking initial estimate y(0) as y(0) = 1 ,

y(1) = 1 +
∫ x

0
(x2 − 1)dx = 1 − x + x3

3
.

y(2) = 1 +
∫ x

0

{

x2 −
(

1 − x + x3

3

)}

dx

= 1 − x + x2

2
+ x3

3
− x4

12

error= y(2) − y(1) = x2

2
− x4

12

max error is given at x = 0.2 , i.e.,
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(0.2)4

2
− (0.2)4

12
> 10−3

Since the error is more than the prescribed accuracy, we go for the next iteration,

y(3) = 1 +
∫ x

0

{

x2 −
(

1 − x + x2

2
+ x3

3
− x4

12

)}

dx

= 1 − x + x2

2
+ x3

6
− x4

12
+ x5

60

error = y(3) − y(2) = −x3

6
− x5

60

at x = 0.2 , max error = − (0.2)3

6
+ (0.2)5

60
> 10−3

Again, we go for the next iteration, giving,

y(4) = 1 − x + x2

2
+ x3

6
− x4

24
+ x5

60
− x6

360

max error = y(4) − y(3) = x4

24
− x6

360
< 10−3

Therefore y(4) is the desired solution which will give an error less than 10−3 for

values of x in the interval (0, 0.2) .

(The analytical solution is y(x) = x2 − 2x + 3 − 2e−x )

3.3 Euler’s Method

uj+1 = uj + hfj, j = 0, 1, 2, . . . , N − 1 (3.7)

where fj = f(tj, uj) . This is called the Euler’s Method. Applying the method at

the mesh points tj , j = 0, 1, 2, . . . , N − 1 , we obtain the numerical solution of

(3.7) as

u1 = u0 + hf0

u2 = u1 + hf1

. . . . . . . . . . . . . . .

uN = uN−1 + hfN−1 .
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Choosing a substitute value of h and the initial condition, u1 is obtained

from the first equation, u2 is obtained from the second equation and so on. The

method (3.7) is called an explicit method, since using uj , h and fj we can

calculate uj+1 directly. The Euler method is the simplest method to solve (3.7).

The truncation error in the method is given by

Tj+1 = u(tj+1) − uj+1

= u(tj+1) − [u(tj) + hf(tj, uj)] = h2

2
u′′(ξ)

where tj < ξ < tj+1 . If we denote max
[t0,b]

|Tj+1| = T and max
[t0,b]

|u′′(ξ)| = M2 ,

then, we have

T ≤ h2

2
M2 (3.8)

The local truncation error is of O(h2) as h → 0 .

Example 3.4. Use the Euler method to solve numerically the intial value problem

u′ = −2tu2, u(0) = 1

with h = 0.2, 0.1 and 0.05 on the interval [0, 1] . Neglecting the roundoff errors,

determine the bound for the error. Apply Richardson’s extrapolation to improve

the computed value u(1, 0)

We have

uj+1 = uj − 2htju
2
j ; j = 0, 1, 2, 3, 4

with h = 0.2 . The intial condition gives u0 = 1

For j = 0; t0 = 0, u0 = 1

u(0.2) = u1 = u0 − 2ht0u
2
0 = 1.0 .

For j = 1; t1 = 0.2, u1 = 1
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u(0.4) = u2 = u1 − 2ht1u
2
1

= 1 − 2(0.2)(0.2)(1)2 = 0.92 .

For j = 2; t2 = 0.4, u2 = 0.92

u(0.6) = u3 = u2 − 2ht2u
2
2 .

= 0.92 − 2(0.2)(0.4)(0.92)2 = 0.78458 .

Similarly, we get

u(0.8) = u4 = 0.63684 , u(1) = u5 = 0.50706 .

When h = 0.1 , we get

for j = 0 : t0 = 0, u0 = 1

u(0.1) = u1 = u0 − 2ht0u
2
0 = 1.0 .

for j = 1 : t1 = 0.1, u1 = 1

u(0.2) = u2 = u1 − 2ht1u
2
1 .

= 1 − 2(0.1)(0.1)(1)2 = 0.98 .

for j = 2 : t2 = 0.2, u2 = 0.98

u(0.3) = u3 = u2 − 2ht2u
2
2 .

= 0.98 − 2(0.1)(0.2)(0.98)2 = 0.94158 .

Similarly, we get

u(0.4) = u4 = 0.88839 , u(0.5) = u5 = 0.82525 ,

u(0.6) = u6 = 0.75715 , u(0.7) = u7 = 0.68835 ,

u(0.8) = u8 = 0.62202 , u(0.9) = u9 = 0.56011 ,

u(1.0) = u10 = 0.50364 .

For h = 0.05 , we get
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u(0.05) = 1.0 , u(0.1) = 0.995 ,

u(0.15) = 0.9851 , u(0.2) = 0.97054 ,

u(0.25) = 0.9517 , u(0.3) = 0.92906 ,

u(0.35) = 0.90316 , u(0.4) = 0.87461 ,

u(0.45) = 0.84401 , u(0.5) = 0.81195 ,

u(0.55) = 0.77899 , u(0.6) = 0.74561 ,

u(0.65) = 0.71225 , u(0.7) = 0.67928 ,

u(0.75) = 0.64698 , u(0.8) = 0.61559 ,

u(0.85) = 0.58527 , u(0.9) = 0.55615 ,

u(0.95) = 0.52831 , u(1.0) = 0.50179 .

The truncation error in the Euler method is given by

TE = h2

2
u′′(ξ)

|TE| = h2

2
|u′′(ξ)| ≤ h2

2
max

0≤ t≤ 1
|u′′(t)| .

Since the exact solution is u(t) = 1/(1 + t2) , we get

|TE| = h2

2
max

0≤ t≤ 1

∣

∣

∣

∣

2(1 − 3t2)

(1 + t2)3

∣

∣

∣

∣

≤ 2h2 .

as the absolute maximum of (1 − 3t2) in [0, 1] is 2 .

The error in Euler method is of the form

u(tj) − uj(h) = c1h + c2h
2 + c3h

3 + · · ·
Richardson’s extrapolation gives

u(k)(h) =
2ku

(k−1)
j (h/2)−u

(k−1)
j (h)

2k−1
.

We have the following extrapolated value for u(1.0) .
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Table 1.3: Extrapolated value for u(1.0)

h u(0)(h) u(1)(h) u(2)(h) u(3)(h)

0.20 0.50706

0.50022

0.10 0.50364 0.49985 0.5

0.49994

0.05 0.50179

Example 3.5. Show that in Euler method the bound of the truncation error,

when applied to the test equation u′ = λ u , u(a) = B , λ > 0 , can be written

as

|u(tj) − u(tj, h)| ≤ hM
2λ

[expλ(tj − a) − 1]

where M = max |u′′(t)| . Generalise the result when applied to the problem

u′ = f(t, u) , u(a) = B .

Applying the Euler method to the test equation u′ = λu , we get

uj+1 = uj + λhuj = (1 + λh)uj

The exact solution satisfies the equation

u(tj+1) = (1 + λh)u(tj) + Tj+1

where Tj+1 is the truncation error given by Tj+1 = [h2u′′(ξ)] /2 . Subtracting the
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two equations and setting ǫj = u(tj) − uj , we obtain

u(tj+1) − uj+1 = (1 + λh) [u(tj) − uj] + Tj+1

or ǫj+1 = (1 + λh)ǫj + Tj+1

Hence, |ǫj+1| ≤ |1 + λh| |ǫj| + |Tj+1| .
Let A = |1 + λh| . Now,

|Tj+1| = h2

2
|u′′(ξ)| ≤ h2

2
M

where M = max
[a,b]

|u′′(t)| . Denote Ej+1 = max |ǫj+1| .Then, we have

Ej+1 ≤ AEj + T , where T = h2M/2 .

Setting j = 0, 1, 2, ..., we get

E1 ≤ AE0 + T

E2 ≤ AE1 + T = A2E0 + (1 + A)T

E3 ≤ AE2 + T = A3E0 + (1 + A + A2)T

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ej ≤ AjE0 + (1 + A + A2 + · · · + Aj−1)T

= AjE0 +
(

Aj−1
A−1

)

T , where A 6= 1 .

Let E0 = 0 , that is, there is no initial error. Now,

(1 + hλ)j < exp[λjh] < exp[λ(tj − a)], λ > 0 .

Since λ > 0 , we get

Ej ≤ h2M
2(hλ)

[exp {λ(tj − a)} − 1] = hM
2λ

[exp {λ(tj − a)} − 1]

Since, max |ǫj| = Ej , we get

|ǫj| ≤ |u(tj) − u(tj, h)| ≤ hM
2λ

[expλ(tj − a) − 1]
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Since λ = ∂(λu)/∂u , the result can be generalised as

|u(tj) − u(tj, h)| ≤ hM
2L

[expλ(tj − a) − 1] ,

where |∂f/∂y| ≤ L .

Example 3.6. The system

y′ = z

z′ = −by − az

where 0 < a < 2
√

b, b > 0 is to be integrated by Euler method with known

intial values. What is the largest step length h for which all solutions of the

corresponding difference equation are bounded?

Applying the Euler method, we obtain

yj+1 = yj + hzj

zj+1 = zj + h(−byj − azj)

= −bhyj + (1 − ah)zj

which may be written as
















yj+1

zj+1

















=

















1 h

−bh 1 − ah

































yj

zj

















or uj+1 = Auj

where

uj =





yj zj





T

and A =

















1 h

−bh 1 − ah
















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The characteristic equation of the matrix A is given by

ξ2 − (2 − ah)ξ + 1 − ah + bh2 = 0 .

Putting ξ = (1 + z)/(1 − z) in the characteristic equation, we get the reduced

characteristic equation as

(4 − 2ah + bh2z2 + 2h(a − bh)z + bh2 = 0 .

The roots of the characteristic equation will lie within the unit circle or that of

the reduced characteristic equation on the left half plane of the z -plane, if and

only if the following conditions will be satisfied:

4 − 2ah + bh2 > 0 , a − bh > 0 , bh2 > 0 .

The first inequality can be written as

(2 −
√

bh)2 + 2h(2
√

b − a) > 0 .

The second inequality gives h < a/b . The third inequality is satisfied since

b > 0 . Hence, we obtain h < a/b

For h = a/b , or a = bh , we get the characteristic equation as

ξ2 − (2 − bh2)ξ + 1 = 0 .

The roots are ξ =
[

(2 − bh2) ±
√

(2 − bh2) − 4
]

/2 .

Since b > 0 , (2− bh2)2 − 4 < 0 , the roots are a complex pair and |ξ| = 1 . Thus,

the largest step length is given by h ≤ a/b .
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UNIT - IV

1 Runge - Kutta Fourth Order Method

Consider now, the Runge - Kutta fourth order methods defined by

uj+1 = uj + W1K1 + W2K2 + W3K3 + W4K4 (1.1)

where

K1 = hf(tj, uj)

K2 = hf(tj + c2h, uj + a21K1)

K3 = hf(tj + c3h, uj + a31K1 + a32K2)

K4 = hf(tj + c4h, uj + a41K1 + a42K2 + a43K3)

along with the conditions

c2 = a21

c3 = a31 + a32

c4 = a41 + a42 + a43

W1 + W2 + W3 + W4 = 1

W2c2 + W3c3 + W4c4 =
1

2

W2c
2
2 + W3c

2
3 + W4c

2
4 =

1

3

W3c2a32 + W4(c2a42 + c3a43) =
1

6

W2c
3
2 + W3c

3
3 + W4c

3
4 =

1

4

W3c
2
2a32 + W4(c

2
2a42 + c2

3a43) =
1

12
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W3c2c3a32 + W4(c2a42 + c3a43) =
1

8

W4c2a32a43 =
1

24
. (1.2)

Applying the method 1.1 to the test equation u′ = λu, we get

K1 = hλuj = h̄uj, where h̄ = hλ,

K2 = hλ(uj + a21K1) = h̄[1 + c2h̄]uj

K3 = hλ(uj + a31K1 + a32K2)

= h̄[uj + a31h̄uj + a32h̄(1 + c2h̄)uj]

= h̄[1 + a31h̄ + a32h̄ + a32c2h̄
2]uj

= h̄[1 + c3h̄ + a32c2h̄
2]uj.

K4 = hλ(uj + a41K1 + a42K2 + a43K3)

= h̄[uj + a41h̄uj + a42h̄(1 + c2h̄)uj + a43h̄(1 + c3h̄ + a32c2h̄
2)uj]

= h̄[1 + (a41 + a42 + a43)h̄ + (a42c2 + a43c3)h̄
2 + a43a32c2h̄

3]uj

= h̄[1 + c4h̄ + (a42c2 + a43c3)h̄
2 + a43a32c2h̄

3]uj

and

uj+1 = uj + W1K1 + W2K2 + W3K3 + W4K4

= uj + W1h̄uj + W2h̄(1 + c2h̄)uj + W3h̄[1 + (c3h̄ + a32c2h̄
2)]uj + W4h̄[1+

c4h̄ + (a42c2 + a43c3)h̄
2 + a43a32c2h̄

3]uj

= [1 + h̄(W1 + W2 + W3 + W4) + h̄2(W2c2 + W3c3 + W4c4) + h̄3{W3a32c2+

W4(a42c2 + a43c3)} + W4a43a32c2h̄
4]uj

uj+1 = [1 + h̄ +
h̄2

2
+

h̄3

6
+

h̄4

24
]uj = E(λh)uj (1.3)

Therefore, the propagation factor of the fourth order methods is indeopendent

of the arbitrary parameters. Hence, the stability intervals or regions of all the

fourth oreder methods is same. For, absolute stability, we require

|E(λh)| = |1 + h̄ +
h̄2

2
+

h̄3

6
+

h̄4

24
| < 1. (1.4)
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When λ is real and λ < 0, we obtain the stability interval as λh ∈ (−2.78, 0),

(see |E(λh)| = |1 + λh + 1
2
λ2h2 + 1

6
λ3h3 + 1

24
λ4h4| < 1 ).

When λh is pure imaginary, set λ = iy. Then, 1.4 gives

|1 + i(yh) − (yh)2

2
− i (yh)3

6
+ (yh)4

24
| < 1

or (1 − t2

2
+ t4

24
) + (t − t3

6
) < 1, where t = yh

or 1 − t4

72
+ t8

576
< 1.

This equation is satisfied for |t| < 2
√

2. Hence, the stability interval in this case

is 0 < |λh| < 2
√

2.

When λ is complex, it is difficult to derive the stability region analytically. We

set λ = x + iy in 1.4 and plot the boundary of the region (plot the real and

imaginary parts). Stability region is plotted in Figure 4.1.

Imh̄

2
√

2

Reh̄

−2
√

2

O

1

2

−1

−2

−1

−2−2.785

Stability
region

F igure.4.1. Stability region for the fourth order Runge-Kutta method, h̄ = hλ

It is easy to verify that the Euler method , backward Euler method and all Runge-

Kutta methods are relatively stable since
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|E(λh)| ≤ eλh, λ > 0

in all these cases.

Consider now, the stability of the implicit method

uj+1 = uj + K1

u1 = hf(tj +
1

2
h, uj +

1

2
K1).

Applying it on the test equation u′ = λu, we get

K1 = hλ[uj + 1
2
K1, orK1 = hλ

1−(hλ)/2
uj

uj+1 = [1 + hλ
1−(hλ)/2

]uj = [1+(hλ)/2
1−(hλ)/2

]uj

Hence, |E(hλ)| = |1+(hλ)/2
1−(hλ)/2

|.
Since, for real λ < 0, |E(hλ)| < 1 always, the method is stable for all λh ∈
(−∞, 0). Therefore, the method is also A− stable.

Example 1.1. Find the implicit Runge- Kutta method of the form

yj+1 = yj + W1K1 + W2K2

K1 = hf(yj)

K2 = hf(yj + a(K1 + K2))

for the solution of t5he initial value problem y′ = f(y), y(t0) = y0. Obtain the

interval of absolute stability when the method is applied on y′ = λy, λ < 0.

We have K1 = hfj.

Since K2 can be expanded in powers of h, we writ it as

K2 = hA1 + h2A2 + h3A3 + · · ·

where Ai ’s are independent of h.

Expanding K2 in Taylor’s series we get

K2 = [hf + ha(K1 + K2)fy + h
2
a2(K1 + K2)

2fyy + h
6
a3(K1 + K2)

3fyyy + · · · ]tj
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Substituting for K1 and K2 we obtain

hA1 + h2A2 + h3A3 + · · · = {hf + ha[hf + hA1 + h2A2 + h3A3 + · · · ]fy

+h
2
a2[hf + hA1 + h2A2 + · · · ]2fyy

+h
6
a3[hf + hA1 + · · · ]3fyyy + · · · }tj

Equating the coefficients of various powers of h, we have

A1 = fj

A2 = (2affy)tj

A3 = (aA2fy + 2a2fyyf
2)tj = (2a2ff2

yy + 2a2fyyf
2)tj

Hence,

yj+1 = yj + hy
′

j + h2

2
y

′′

j + h3

6
y

′′′

j + · · ·
= yj + [hf + h2

2
ffy + h3

6
(ff2

y + f 2fyy) + · · · ]tj
= yj + W1hfj + W2[hf + 2ah2ffy + h3(2a2f 2fyy) + · · · ]tj

Comparing the terms corresponding to various powers of h, we obtain

W1 + W2 = 1

2aW2 = 1
2

2a2W2 = 1
6
.

whose solution is given by

a = 1/3, W2 = 3/4, W1 = 1/4.

The implicit Runge - Kutta method becomes

K1 = nhf(yj)

K2 = hf(yj + 1
3
(K1 + K2))

yj+1 = yj + 1
4
(K1 + 3K2).

The order of the method is 3.

We now apply the method to the test equation y′ = λy, λ < 0.

We have K1 = h̄yj

K2 = h̄(yj + 1
3
(h̄yj + K2))
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K2 = 1+(1/3)h̄

1−(1/3)h̄
(h̄yj)

yj+1 = yj + 1
4
h̄yj + 1

4
1+(1/3)h̄

1−(1/3)h̄
(h̄yj)

= 1+(2/3)h̄+(1/6)h̄2

1−(1/3)h̄
yj

where h̄ = hλ.

This is a first order difference equation and the characteristic equation is

given by

ξ = 1+(2/3)h̄+(1/6)h̄2

1−(1/3)h̄
.

For absolute stability (λ < 0), we require, |ξ| ≤ 1. Therefore,

− 1 ≤ 1+(2/3)h̄+(1/6)h̄2

1−(h̄/3)
≤ 1

or − 1 + h̄
3
≤ 1 + 2

3
h̄ + 1

6
h̄2 ≤ 1 − h̄

3
.

The right inequality gives

h̄ + 1
6
h̄2 = h̄

6
(6 + h̄) ≤ 0.

Since h̄ = λh < 0, we require 6 + h̄ ≥ 0 or h̄ ≥ −6.

The left inequality

2 + h̄ +
1

6
h̄2 ≥ 0

is satisfied for h̄ ≥ −6. Hence, the stability interval is (−6, 0).

2 PREDICTOR - CORRECTOR METHODS

2.1 P (EC)mE Method

We shall now discuss the application of the explicit and implicit multistep meth-

ods for the initial value problems. We use the explicit (predictor) method for

predicting a value u
(0)
j+1 and then use the implicit (corrector) method iteratively
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until the convergence is obtained. We consider the predictor - corrector set

P : u
(0)
j+1 =

k
∑

i=1

a
(0)
i uj−i+1 + h

k
∑

i=1

b
(0)
i fj−i+1 (2.1)

C : us+1
j+1 =

k
∑

i=1

aiuj−i+1 + hb0f(tj+1, u
s+1
j+1) + h

k
∑

i=1

bifj−i+1, i = 0, 1, 2, . . . (2.2)

to solve the initial value problem

u′ = f(t, u), u(t0) = u0.

The predictor- corrector method may be written as

P : Predict some value u
(0)
j+1

E : Evaluate f(tj+1, u
(0)
j+1)

C : Correct

u
(1)
j+1 =

k
∑

i=1

(aiuj−i+1 + hbifj−i+1) + hb0f(tj+1, u
(1)
j+1)

. . . . . . . . . . . . . . . . . . . . .

The sequence of operations PECECE. . . , where corrector C is applied m times,

is denotyed by P (EC)mE and is called a predictor-corrector method.

We shall now prove a sufficient condition for the convergence of P (EC)mE

scheme.

Theorem 2.1. Let {u(m)
j+1} be a sequence of approximations of uj+1 obtained

by a PECE. . . method. If

|∂f
∂u

(tj+1, u)| ≤ L

(for all u near uj+1 including u
(0)
j+1, u

(
j+11), . . . ) where L satisfies the conditions

L < 1/|hb0|, then the sequence {u(m)
j+1} converges to uj+1.
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The numerical solution satisfies the equation

uj+1 =
k

∑

i=1

aiuj−i+1 + hb0f(tj+1, uj+1) + h

k
∑

i=1

bifj−i+1

The corrector satisfies the equation 2.2. Substracting these two equations we get

uj+1 − u
(s+1)
j+1 = hb0[f(tj+1, uj+1) − f(tj+1, u

(s)
j+1)]

Using the Lagrange mean value theorem, we get

uj+1 − u
(s+1)
j+1 = hb0(uj+1 − u

(s)
j+1)

∂f
∂u

(tj+1, u
∗)

where u
(s)
j+1 ≤ u∗ ≤ uj+1. Hence,

|uj+1 − u
(s+1)
j+1 | ≤ |hb0||uj+1 − u

(s)
j+1||∂f

∂u
(tj+1, u)|

≤ hL|b0||uj+1 − u
(s)
j+1|

≤ hL|b0|]s|uj+1 − u
(0)
j+1|

Now, lim
s→∞

|uj+1 − u
(s+1)
j+1 | → 0, if

hL|b0| < 1 or L < 1
h|b0|

.

We have the following examples of Adams- Moulton methods.

Order 2: uj+1 = uj + h
2
[fj+1 + fj]

b0 = 1/2, hL < 2.

Order 3: uj+1 = uj + h
12

[5fj+1 + 8fj − fj−1]

b0 = 5/12, hL < 12/5.

Let us illustrate P (EC)mE method for the equation u′ = λu and the P−C

set

P : uj+1 = uj + hfj (Euler method)

C : uj+1 = uj + h
2
(fj+1 + fj) (Euler- Cauchy or Heun method)

The P (EC)mE method may be written as

u
(0)
j+1 = uj + hfj

u
(s+1)
j+1 = uj + h

2
(f

(s−1)
j+1 + fj), s = 1, 2, . . . , m.

uj+1 = u
(m)
j+1
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fj+1 = f
(m)
j+1 (2.3)

where f
(s)
j+1 = f(tj+1, u

(s)
j+1)

The P (EC)mE method becomes

u
(0)
j+1 = (1 + λh)uj

u
(1)
j+1 = uj + h

2
[λ(1 + λh)uj + λuj]

= [1 + λh + 1
2
(λh)2]uj

u
(2)
j+1 = uj + h

2
[λ(1 + λh + 1

2
(λh)2)uj + λuj]

= [1 + λh + (λh)2

2
+ (λh)3

4
]uj .

. . . . . . . . . . . . . . . . . . . . .

u
(m)
j+1 = [1 + λh + (λh)2

2
+ (λh)3

22 + · · · + (λh)m+1

2m ]uj

= [1 + λh1 + p + p2 + · · · + pm]uj

where p = λh/2.

Summing the series, we obtain

u
(m)
j+1 = [1 + 2p

1 − pm+1

1 − p
]uj =

1

1 − p
[1 + p − 2pm+2]uj (2.4)

We note that for λ < 0, |1 + (λh/2)| < |1 − (λh/2)|.
If the corrector is iterated to converge, i.e. m → ∞, the equation 2.4 will

converge if |p| = |λh/2| < 1 or |λh| < 2.

The analytical solution of the test equation may be written as

u(tj+1) = eλhu(tj).

The truncation error of P (EC)mE method given by

Tj+1 = u(tj+1) − uj+1

= (eλh − [
1 + (λh/2) − 2(λh/2)m+2

1 − (λh/2)
])u(tj) (2.5)

becomes
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1
2
(λh)2 + O(|λh|3) for 0 corrector

1
6
(λh)3 + O(|λh|4) for 1 corrector

− 1
12

(λh)3 + O(|λh|4) for 2 correctors

− 1
12

(λh)3 + O(|λh|4) for 3 correctors.

We thus see that the application more than twice does not improve the result

because the minimum truncation error is obtained at this stage.

We note the following:

(i) The order of the predictor is less than or equal to the order of the predictor.

(ii) We may not restrict to the use of only absolutely stable predictors, that is,

we may, if necessary, use unstable predictors.

(iii) If the order of the predictor is lower than the order of the corrector, then

each iteration of the corrector raises the order of the P −C set, until the order of

the corrector is reached. If iterated further, then the error constant may reduce

Next we apply the P − C set

P : uj+1 = 2uj − uj−1 + h2fj.

C : uj+1 = 2uj − uj−1 + h2

12
(fj+1 + 10fj + fj−1).

to the second order initial value problem

u′′ = −ω2u

u(0) = 1, u′(0) = 0.

The P (EC)mE method may be written as

u
(0)
j+1 = 2uj − uj−1 + h2fj

u
(0)
j+1 = 2uj − uj−1 + h2

12
(fj+1(s − 1) + 10fj + fj−1)

s = 1, 2, . . . , m.
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uj+1 = u
(m)
j+1, fj+1 = f

(m)
j+1

where f
(s)
j+1 = f(tj+1, u

(s)
j+1).

We obtain

u
(0)
j+1 = 2uj − uj−1 − H2uj.

= (2 − H2)uj − uj−1

where H = ωh.

u
(1)
j+1 = 2uj − uj−1 + h2

12
[−ω2(2 − H12)uj − uj−1 − 10ω2uj − ω2uj−1]

= 2uj − uj−1 − H2

12
[(12 − H2)uj].

= (2 − H2 + H2

12
)uj − uj−1.

u
(2)
j+1 = 2uj − uj−1 − H2

12
[u

(2)
j+1 + 10uj + uj−1]

= 2uj − uj−1 − H2

12
[(2 − H2 + H4

12
)uj − uj−1 + 10uj + uj−1]

= [2 − H2 + (H2)2

12
− (H2)3

122 ]uj − uj−1.

After m correctors we obtain

uj+1 − 2Buj + uj−1 = 0

where

B = 1−(5H2/12)+6(−1)m−1(H2/12)m+2

1+(H2/12)

The characteristic equation of this difference equation is

ξ2 − 2Bξ + 1 = 0.

The solution of the difference equation converges, if the roots of the characteristic

equation lie inside the unit circle or if they lie on the unit circle, they are simple.

Now, since the product of the roots is equal to 1 , the roots lie on the unit

circle |ξ| = 1, only if they are a complex pair of magnitude 1 . If discriminant

4(B2 − 1) < 0, that is |B| < 1, then the roots are

ξ = [B ± (
√

1 − B2)i] and |ξ| = 1.

For convergence, we require |B| < 1 as m → ∞. This condition is satisfied if

H2

12
< 1 and |1−(5H2/12)

1+(H2/12)
| < 1.
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The second inequality gives

−[1 + H2

12
] < 1 − H2

12
< 1 + H2

12
.

The right part gives H2 > 0 which is true, and the left part gives H2 < 6.

Hence, the condition for convergence is H2 < 6.

The exact solution of the differential equation is given by u = cosωt. We have

the truncation error as

Tj+1 = u(tj+1) − uj+1

= u(tj+1) − 2[2Bu(tj) − u(tj−1)]

= cos[ω(tj + h)] + cosω(tj − h) − 2Bu(tj)

= 2cos(ωtj)cos(ωh) − 2Bu(tj)

= 2cosH − Bu(tj). (2.6)

Now,

B = [1 − 5H2

12
+ 6(−1)m−1(H2

12
)]m+2[1 + H2

12
]−1

= [1 − 5H2

12
+ 6(−1)m−1(H2

12
)]m+2[1 − H2

12
+ H4

144
− H6

1728
+ · · · ]

= [1 − H2

2
+ H4

24
− H6

288
+ · · · ] + 6(−1)m−1(H2

12
)m+2[1 − H2

12
+ · · · ]

and cosH = 1 − H2

2
+ H4

24
− H6

720
+ · · ·

We have

for m = 0 : 2(cosH − B) = (H4

12
) + · · ·

for m = 1 : 2(cosH − B) = −( H6

360
) + · · ·

for m = 2 : 2(cosH − B) = ( H6

240
) + · · ·

for m = 3 : 2(cosH − B) = ( H6

240
) + · · ·

Therefore, truncation error becomes

(H4/12) + O(H6) for 0 corrector

−(H6/360) + O(H8) for 1 corrector

(H6/240) + O(H8) for 2 corrector

(H6/240) + O(H8) for 3 corrector
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Hence, application of the corrector more than twice does not improve the result.

2.2 PMpCMc Method

We can use the estimate of the truncation error to modify the predicted and cor-

rected values. Thus, we may write this procedure as PMpCMc . This is called

the modified predictor-corrector method. The estimates of the local trun-

cation error may be obtained as follows. Let the predictor 2.1 and the corrector

2.2 both have the order p . Thus we have

u(tj+1) − u
(m)
j+1 = c∗j+1h

p+1u(p+1)(tj) + O(hp+2) (2.7)

u(tj+1) − u
(c)
j+1 = cj+1h

p+1u(p+1)(tj) + O(hp+2) (2.8)

where u
(p)
j+1 and u

(c)
j+1 represent the solution values obtained by using the predic-

tor and corrector respectiely.

Subtracting 2.7 and 2.8 we get

u
(p)
j+1 − u

(c)
j+1 = (cj+1 − c8

j+1)h
p+1u(p+1)(tj) + O(hp+2). (2.9)

Substituting the value of hp+1u(p+1)(tj) from 2.9 into 2.7 and 2.8 we obtain the

modified predicted and corrected values mj+1 and uj+1 respectively as

mj+1 = pj+1 + c∗j+1(cj+1 − c∗j+1)
−1(pj+1 − Cj+1)

uj+1 = Cj+1 + cj+1(cj+1 − c∗j+1)
−1(pj+1 − Cj+1)

where pj+1 and cj+1 are the predicted and corrected values respectively.

Thus the modified P − C method becomes

Predicted value : pj+1 =
k

∑

i=1

(a
(0)
i uj−i+1 + hb

(0)
i fj−i+1)

Modified value :

mj+1 = pj+1 + c∗j+1(cj+1 − c∗j+1)
−1(pi − Cj) (2.10)

654



Corrector value : Cj+1 =
k

∑

i=1

(aiuj−i+1 + hbiu
′
j−i+1) + hb0m

′
j+1

Final value : uj+1 = Cj+1 + cj+1(cj+1 − c∗j+1)
−1(pj+1 − Cj+1).

The quantity p1 − c1 required for the modification of the first step is generally

taken as

p1 − C1 = 0. (2.11)

For example, consider the P − C method

P : uj+1 = uj + h
2
(3u′

j − u′
j−1)

C : uj+1 = uj + h
2
(u′

j+1 − u′
j)

Thus,

u(tj+1) − u
(p)
j+1 = 5

12
h3u′′′(tj) + O(h4)

u(tj+1) − u
(p)
j+1 = 5

12
h3u′′′(tj) + O(h4)

Comparing with 2.7 and 2.8, we get c∗j+1 = 5/12, cj+1 = −1/12 and cj+1−c∗j+1 =

1/2. Using 2.10, the modified predicted - corrceted method can be written as

pj+1 = uj + h
2
(3u′

j − u′
j−1)

mj+1 = pj+1 − 5
6
(pj − Cj)

Cj+1 = uj + h
2
(m′

j+1 + u′
j)

uj+1 = Cj+1 + 1
2
(pj+1 − Cj+1), j = 1, 2, . . .

Example 2.2. Solve the initial value problem

u′ = −2tu2, u(0) = 1

with h = 0.2 on the interval [0, 0.4], using the P − C method

P : uj+1 = uj + h
2
(3u′

j − u′
j+1)

C : uj+1 = uj + h
2
(u′

j+1 + u′
j)

as (i) P (EC)mE, m = 2, (ii) PMpCMc.

To use the predictor, we need the values of u(t) and u′(t) at t = 0.2. The values
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obtained from the exact solution u(t) = 1.0/(1 + t2) are

u(0.2) = u1 = 0.09615385, u′(0.2) = u′
1 = −0.3698225.

We may also use the Taylor series method of second order or any Runge-Kutta

method of second order to obatin u(0.2) and u′(0.2). We obtain the following

results.

For j = 1 : t0 = 0, t1 = 0.2, t2 = 0.4.

P : u
(0)
2 = u1 +

h

2
(3u′

1 − u′
0)

= 0.9615386+0.1(−3×0.3698225−0) = 0.8505918

E : f(t2, u
(0)
2 ) = −0.5788051.

C : u
(1)
2 = u1 +

h

2
(u′

2
(0)

+ u′
1)

= 0.9615385+0.1(−0.5788051−0.3698225) = 0.866675

E : f(t2, u
(1)
2 ) = −0.6009015

C : u
(1)
2 = u1 +

h

2
(u′

2
(1)

+ u′
1)

= 0.9615385 + 0.1(−0.6009015 − 0.3698225)

= 0.8644661 ≈ u(0.4).

For PMpCMc method, we have

pj+1 = uj + h
2
(3u′

j − u′
j−1)

mj+1 = pj+1 − 5
6
(pj − Cj)

Cj+1 = uj + h
2
(m′

j+1 + u′
j)

uj+1 = Cj+1 + 1
2
(pj+1 − Cj+1), j = 1, 2, . . .

To start the method, we need the values of u(t) and u′(t) at t = 0.2. The exact

values are

t1 = 0.2, u1 = 0.9615385, u′
1 = −0.3698225.
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For j = 1, we get

p2 = u1 + h
2
(3u′

1 − u′
0)

= 0.9615385 + 0.1(−3 × 0.3698225 − 0) = 0.8505918.

m2 = p2 − 5
6
(p1 − C1).

Taking p1 − C1 = 0, we obatin

m2 = 0.8505918

m′
2 = −2t2m

2
2 = −2(0.4)(0.8505918)2 = −0.5788051

C2 = u1 + h
2
(m′

2 + u′
1)

= 0.9615385 + 0.1(−0.5788051 − 0.3698225) = 0.8666757

p2 − C2 = 0.8505918 − 0.8666757 = −0.0160839

u(0.4) = u2 = C2 + 1
6
(p2 − C2)

= 0.8666757 + 1
6
(−0.0160839) = 0.8639951.

The exact solution is u(0.4) = 0.86207.

3 Milne’s Method

The open-type quadrature formula is

x4
∫

x0

y(x)dx = 4h
3

(2y1 − y2 + 2y3) + 14
45

h5yiv(ξ) .

From the above we can write,

xn+1
∫

xn−3

y(x)dx =
4h

3
(2yn−2 − yn−1 + 2yn) +

14

45
h5yiv(ξ). (3.1)

Applying (3.1) on y′ = dy
dx

, we get

yn+1 = yn−3 + 4h
3

(2y′
n−2 − y′

n−1 + 2y′
n) + 14

45
h5yv(ξ) .

When the above formula is used in context of the differential equation y′ = f(x, y)
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it gives,

yn+1 = yn−3 +
4h

3
(2fn−2 − fn−1 + 2fn) +

14

45
h5yv(ξ). (3.2)

Similarly, from the Simpson’s quadrature formula(closed type), we get,

yn+1 = yn−1 +
h

3
(fn−1 + 4fn + fn+1) −

h5

90
yv(ξ). (3.3)

It may be noted that the error in (3.2) is 28 times that of formula (3.3). Therefore,

using (3.2) as predictor and (3.3) as corrector formula, the Milne’s method may

be written as,

yp
n+1 = yn−3 +

4h

3
(2fn−2 − fn−1 + 2fn). (3.4)

yc
n+1 = yn−1 +

h

3
(fn−1 + 4fn + fn+1). (3.5)

The value of fn+1 is computed using (6), i.e.,

fn+1 = f(xn+1, y
p
n+1). (3.6)

The P-C method given by (3.4), (3.5) is also known as Milne-Simpson method.

It may be noted from (3.4) that in order to compute yp
n+1 , the values of y

at four previous points, viz., yn−3 , yn−2 , yn−1 and yn are ought to be known

while in all previous methods the value of y was requried at one previous point,

x = xn only. Thus only two values were involved in the earlier methods, one at

the current level and the other at the previous level. The methods which require

information at more than one previous points in order to compute the value at the

current level are known as ’multi-step’ methods. Milne-Simpson’s is a multi-step

method.

On account of the reason stated above, the Milne’s method is not ’self-starting’.

That is, the first three values y1 , y2 and y3 can not be computed by this method.
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These values have to be computed by any one of the methods discussed earlier.

After that this method may be applied for n = 3 onwards.

We now discuss ths stability of the corrector formula (3.5). As before, let yn

denote the computed value and y(xn) , the exact value of y at x = xn , and let

ǫn be the error in yn such that y(xn) = yn + ǫn . Then,

f {xn, y(xn)} = f {xn, yn + ǫn}

= f(xn, yn)+ǫnfy(xn, yn)+higher powers of ǫ2
n

or f {xn, y(xn)} − f(xn, yn) = ǫnθn , where θn = fy(xn, yn)

Similar relations can be written for xn−1 and xn+1 , giving

f {xn−1, y(xn−1)}−f(xn−1, yn−1) = ǫn−1θn−1 , where θn−1 = fy(xn−1, yn−1)

and f {xn+1, y(xn+1)}−f(xn+1, yn+1) = ǫn+1θn+1 , where θn+1 = fy(xn+1, yn+1)

From the corrector formula (3.5), the approximate value of y at x = xn+1 =

xn + h is given by,

yn+1 = yn−1 + h
3
(fn−1 + 4fn + fn+1) ,

while the exact value would be,

y(xn+1) = y(xn−1)+
h
3
[f(xn−1, yn−1 + ǫn−1) + 4f(xn, yn + ǫn) + f(xn+1, yn+1 + ǫn+1)] .

Subtracting the approximate value from the exact and using above relations we

get,

ǫn+1 = ǫn−1 + h
3
(θn−1ǫn−1 + 4θnǫn + θn+1ǫn+1)

or
(

1 − h
3
θn+1

)

ǫn+1 − 4h
3
θnǫn −

(

1 + h
3
θn−1

)

ǫn−1 = 0 .

Assuming h to be small such that value of θ = fy does not vary much in

xn−1 ≤ x ≤ xn+1 , the above can be written as,
(

1 − h
3
θ
)

ǫn+1 − 4h
3
θǫn −

(

1 + h
3
θ
)

ǫn−1 = 0

In order to solve the above difference equation, let us assume the solution as

ǫn = αn . Substituting this value, we get the auxiliary/characteristic equation,

659



(

1 − hθ
3

)

α2 − 4hθ
3

α −
(

1 + hθ
3

)

= 0 .

If α1 and α2 are the roots of this equation, then

α1 + α2 = 4hθ
3−hθ

; α1.α2 = −3+hθ
3−hθ

,

and the solution will be given by,

ǫn = c1(α1)
n + c2(α2)

n ,

where c1 and c2 are arbitrary constants.

For hθ small, the product of the roots α1α2 is nearly equal to unity in absolute

value which means the roots α1 and α2 are almost reciprocal to each other

numerically. Thus the solution can be expressed as,

ǫn ≈ c1(α1)
n + c2(

1
α1

)n , since α2 = − 1
α1

.

The above solution has two components which behave reciprocally. That is, if

one component decreases with increasing n , the other increases. Thus, in any

case, the error grows exponentially with number of steps. Hence, the formula is

unstable. That means, the formula should not be used for large number of steps

and nor for iteration in the scheme P-C-C-C.

It may also be stated that such a situation is very likely to occur whenever

a lower order differential equation is approximated by a higher order difference

formula.

660



)1689

UNIT - V

1 Introduction

Consider the two point boundary value problem

u′′ = f(x, u, u′), x ∈ (a, b) (1.1)

where a prime denotes differentiation with respect to x , with one of the following

three boundary conditions.

Boundary conditions of the first kind:

u(a) = γ1, u(b) = γ2. (1.2)

Boundary conditions of the second kind:

u′(a) = γ1, u
′(b) = γ2. (1.3)

Boundary conditions of the third kind (or mixed kind):

a0u(a) − a1u
′(a) = γ1b0u(b) + b1u

′(b) = γ2 (1.4)

where a0, b0, a1, b1, γ1 and γ2 are constants such that

a0a1 ≥ 0, |a0| + |a1| 6= 0

b0b1 ≥ 0, |b0| + |b1| 6= 0 and |a0| + |b0| 6= 0

A homogeneous boundary value problem possesses only a trivial solution y(x) =

0 . We, therefore, consider those boundary value problems in which a parameter

λ occurs either in the differential equation or in the boundary conditions, and

we determine values of λ , called eigenvalues, for which the boundary value
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problem has a nontrivial solution. Such a solution is called an eigenfunction and

the entire problem is called an eigenvalue or a characteristic value problem. In

general, a boundary value problem does not always have a unique solution. How-

ever,we shall assume that the boundary value problem under consideration has a

unique solution.

The solution of the boundary value problem 1.1 exists and is unique if the fol-

lowing conditions are satisfied:

Let u′ = z and −∞ < u, z <∞
(i) f(x, u, z) is continuous.

(ii) ∂f
∂u

and ∂f
∂z

exist and are continuous.

(iii) ∂f
∂u
> 0 and |∂f

∂z
| ≤ w . In what follows, we shall assume that the boundary

value problem has a unique solution and we shall attempt to determine it. The

numerical methods for solving the boundary value problems may broadly be clas-

sified into the following three types:

(i) Shooting methods These are initial value problem methods. Here, we add

sufficient number of conditions at one end point and adjust these conditions until

the required conditions are satisfied at the other end.

(ii) Difference methods The differential equation is replaced by a set of differ-

ence equations which are solved by direct or iterative methods.

(ii) Finite element methods The differential equation is discretized by using

approximate methods with the piecewise polynomial solution.

We shall now discuss in detail the shooting methods, difference methods and fi-

nite element methods for solving numerically both the linear and nonlinear second

order boundary value problems.
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2 Linear Second Order Differential Equations

Consider the boundary value problem 1.1 (BVP) subject to the given boundary

conditions.

Since the differential equation is of second order, we require two linearly in-

dependent conditions to solve the boundary value problem. One of the ways of

solving the boundary value problem is the following.

Boundary conditions of the first kind:

Here, we are given u(a) = γ1 . In order that an initial value method can be

used, we guess the value of the slope at x = a as u′(a) = s .

Boundary conditions of the second kind:

Here, we are given u′(a) = γ1 . In order that an initial value method can be

used, we guess the value of u(x) at x = a as u(a) = s .

Boundary conditions of the third kind:

Here, we guess the value u(a) or u′(a) . If we assume that u′(a) = s , then

from 1.4, we get

u(a) = (a1s+ γ1)/a0 .

The related initial value problem is solved upto x = b , by using a singlestep or

a multistep method. If the problem is solved directly, then we use the methods

for second order initial value probelms. If the differential equation is reduced to

a system of two first order equations, then we use the Runge-Kutta methods or

the multistep methods for a system of first order equations.

If the solution at x = b does not satisfy the given boundary condition at the

other end x = b , then we take another guess value of u(a) or u′(a) and solve
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the initial value problem again upto x = b . These two solutions at x = b , of

the initial value problems are used to obtain a better estimate of u(a) or u′(a) .

A sequence of such problems are solved, if necessary, to obtain the solution of

the given boundary value problem. For, a linear, nonhomogeneous boundary

value problem, it is sufficient to solve two initial value problems with to linearly

independent guess initial conditions.

This technique of solving the boundary value problems by using the methods

for solving the initial value problems is called the shooting method.

2.1 Linear Second Order Differential Equations

Consider the numerical solution of the differential equation

−u′′ + p(x)u′ + q(x)u = r(x), a < x < b (2.1)

subject to the boundary conditions. We assume that the functions p(x), q(x) > 0 ,

and r(x) are continuous on [a, b] , so that the boundary value problem 2.1 has a

unique solution.

The general solution of 2.1 can be written as

u(x) = u0(x) + µ1u1(x) + µ2u2(x) (2.2)

where

(i)u0(x) is a particular solution of the nonhomogeneous equation 2.1, that is

−u′′0 + p(x)u′0 + q(x)u0 = r(x) (2.3)

(ii)u1(x) and u2(x) are two linearly independent, complementary solutions of

the corresponding homogeneous equation of 2.1, that is

−u′′1 + p(x)u′1 + q(x)u1 = 0 (2.4)
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−u′′2 + p(x)u′2 + q(x)u2 = 0 (2.5)

We choose the initial conditions as follows:

Boundary conditions of the first kind:

Since u(a) = γ1 is given, we take a guess value for u′(a) . We have the following

two cases.

Case 1 γ1 6= 0 . We choose u0(a) = u1(a) = u2(a) = γ1

u′0(a) = η∗0(a), u
′
1(a) = η∗1, u

′
2(a) = η∗2 (2.6)

where η∗0, η
∗
1, η

∗
2 are arbitrary. Since u1(x) and u2(x) are linearly independent

solutions, a suitable choice of the initial conditions is

η∗0 = 0, η∗1 = 1, η∗2 = 0. (2.7)

Other choices of linearly independent values can also be considered.

We now solve the differential equations (2.3)-(2.5) along with the corresponding

initial conditions, using the initial value methods with the same step lengths, and

obtain u0(b), u1(b) and u2(b) .

Now since the solution (2.2) satisfies the boundary conditions at x = a and

x = b , we obtain, at

x = a : u0(a) + µ1u1(a) + µ2u2(a) = γ1

or γ1 + µ1γ1 + γ2γ1 = γ1

or µ1 + µ2 = 0 (2.8)

x = b : u0(b) + µ1u1(b) + µ2u2(b) = γ2

or

µ2 =
γ2 − u0(b)

u2(b) − u1(b)
, u1(b) 6= u2(b). (2.9)
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Case 2 γ1 = 0 . In this case, we cannot use the conditions (2.7), since [u1(a), u
′
1(a)]

T =

[0, 1]T and [u2(a), u
′
2(a)]

T = [0, 0]T are linearly dependent.

We choose the conditions as

u0(a) = η0, u1(a) = η1, u2(a) = η2 ,

u′0(a) = η∗0, u
′
1(a) = η∗1, u

′
2(a) = η∗2 .

A suitable set of values is

η0 = γ1 = 0, η∗0 = 0; η∗1 = 0; η2 = 0, η∗2 = 1. (2.10)

We note that the conditions [u1(a), u
′
1(a)]

T = [1, 0] and [u2(a), u
′
2(a)]

T =

[0, 1]T are linearly independent. Any other linearly independent set of values

can be used.

We now solve the corresponding initial value problems upto x = b .

Now, since the solution (2.2) satisfies the boundary conditions at x = a and

x = b , we obtain, at

x = a : u0(a) + µ1u1(a) + µ2u2(a) = γ1 = 0

or η0 + µ1η1 + µ2η2 = 0 ,

or µ1 = 0 (using(2.10))

x = b : u0(b) + µ1u1(b) + µ2u2(b) = γ2 (2.11)

or µ2 =
γ2 − u0(b)

u2(b)
, u2(b) 6= 0. (2.12)

We determine µ1, µ2 from (2.8) or (2.11) and obtain the solution of the given

boundary value problem, using (2.2), at the mesh points used in integrating the

initial value problems.
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Boundary conditions of the second kind:

Since u′(a) = γ1 is given, we guess a value for u(a) . Again, we consider the

following two cases.

Case 1. γ1 6= 0 . We choose u0(a) = η0, u1(a) = η1, u2(a) = η2 ,

u′0(a) = η0, u
′
1(a) = η1, u

′
2(a) = γ1 (2.13)

A suitable set of values is

η0 = 0, η1 = 1, η2 = 0 (2.14)

Since the initial conditions [u1(a), u
′
1(a)]

T = [1, γ1]
T , [u2(a), u

′
2(a)]

T = [0, 1]T are

linearly independent, we obtain linearly independent solutions u1(x) and u2(x) .

Using these initial conditions, we solve the corresponding initial value problems,

with the same step lengths, upto x = b .

Now, from (2.2), we get

u′(x) = u′0(x) + µ1u
′
1(x) + µ2u

′
2(x) (2.15)

Using the given conditions (1.3), we get, at

x = a : u′0(a) + µ1u
′
1(a) + µ2u

′
2(a) = γ1

or γ1 + µ1γ1 + µ2γ1 = γ1, orµ1 + µ2 = 0. (2.16)

x = b : u′0(b) + µ1u
′
1(b) + µ2u

′
2(b) = γ2

or µ2 =
γ2 − u′0(b)

u′2(b)
, u′1(b) 6= u′2(b). (2.17)

Case 2. γ1 = 0 . We cannot use the conditions as in case 1, since [u1(a), u
′
1(a)]

T =

[1, 0]T and [u2(a), u
′
2(a)]

T = [0, 0]T are linearly dependent. In this case, we choose

u0(a) = η0, u1(a) = η1, u2(a) = η2
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u′0(a) = η∗0, u
′
1(a) = η∗1, u

′
2(a) = η∗2 .

A suitable set of values is

η0 = 0, η∗0 = γ1 = 0; η1 = 1, η∗1 = 0; η2 = 0, η∗2 = 1 (2.18)

We note that the conditions [u1(a), u
′
1(a)]

T = [1, 0]T and [u2(a), u
′
2(a)]

T =

[0, 1]T are linearly independent. Any other set of linearly independent values can

be used.

Using (2.2),(2.15) and the boundary conditions (1.3), we get, at

x = a : u′0(a) + µ1u
′
1(a) + µ2u

′
2(a) = γ1 = 0

or η∗0 + µ1η
∗
1 + µ2η

∗
2 = 0, orµ2 = 0. (2.19)

x = b : u′0(b) + µ1u
′
1(b) + µ2u

′
2(b) = γ2

or µ1 =
γ2 − u′0(b)

u′1(b)
, u′1(b) 6= 0. (2.20)

We determine µ1, µ2 from (2.16) or (2.20) and obtain the solution of the boundary

value problem, using (2.2), at the mesh points used in integraing the initial value

problems.

Boundary conditions of the third kind:

In this case, we assume the arbitrary initial conditions u0(a) = η0, u1(a) =

η1, u2(a) = η2

u′0(a) = η∗0, u
′
1(a) = η∗1, u

′
2(a) = η∗2. (2.21)

A suitable set of values is

η0 = 0, η∗0 = 0; η1 = 1, η∗1 = 0; η2 = 0, η∗2 = 1 (2.22)

Again, we note that the conditions [u1(a), u
′
1(a)]

T = [1, 0]T and [u2(a), u
′
2(a)]

T =

[0, 1]T are linearly independent. Using these initial conditions, we solve the cor-

responding initial value problems, using the same step lengths, upto x = b .
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Using (2.2),(2.18) and the boundary conditions (1.3), we get, at

x = a : a0[u0(a) + µ1u1(a) + µ2u2(a)] − a1[u
′
0(a) + µ1u

′
1(a) + µ2u

′
2(a)] = γ1

or a0[u0(a) + µ1u1(a) + µ2u2(a)] − a1[u
′
0(a) + µ1u

′
1(a) + µ2u

′
2(a)] = γ1

or a0[η0 + µ1η1 + µ2η2] − a1[η
∗
0 + µ1η

∗
1 + µ2η

∗
2] = γ1

or a0µ1 − a1µ2 = γ1. (2.23)

x = b : b0[u0(b) + µ1u1(b) + µ2u2(b)] − a1[η
∗
0 + µ1η

∗
1 + µ2η

∗
2] = γ1

or µ1[b0u1(b)+b1u
′
1(b)]+µ2[bou2(b)+b1u

′
2(b)] = γ2− [bou0(b)+b1u

′
0(b)]. (2.24)

We determine µ1, µ2 from (2.23) and obtain the solution of the boundary

value problem, using (2.2), at the mesh points used in integrating the initial

value problems.

The shooting method requires the solution of the three initial value problems

2.3, 2.5 and 2.8. Denoting φi(x) = w(i+1)(x) and φ′i(x) = v(i+1)(x), i = 0, 1, 2,

the IVPs 2.3-2.8 can be written as the following equivalent first order systems.

2.2 Alternate Method

When the boundary value problem is nonhomogeneous, then it is sufficient to

solve the two initial value problems

−φ′′
1 + p(x)φ′

1 + q(x)φ1 = r(x) (2.25)

−φ′′
2 + p(x)φ′

2 + q(x)φ2 = r(x) (2.26)

with suitable initial conditions at x = a . We write the general solution of the

boundary value problem in the form

y(x) = λφ1(x) + (1 − λ)φ2(x) (2.27)
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and determine λ so that the boundary condition at the other end, that is, at

x = b is satisfied. We solve the inital value problems (2.25),(2.26) upto x = b

using the initial conditions.

(i)Boundary conditions of the first kind:

φ1(a) = γ1, φ
′
1(a) = 0

φ2(a) = γ1, φ
′
2(a) = 1

From 2.27, we obtain

y(b) = γ2 = λφ1(b) + (1 − λ)φ2(b) ,

which gives

λ = γ2−φ2(b)
φ1(b)−φ2(b)

, φ1(b) 6= φ2(b) .

(ii)Boundary conditions of the second kind:

φ1(a) = 0, φ′
1(a) = γ1

φ2(a) = 1, φ′
2(a) = γ1

From 2.27, we obtain

y′(b) = γ2 = λφ′
1(b) + (1 − λ)φ′

2(b) ,

which gives

λ =
γ2−φ′

2(b)

φ′

1(b)−φ′

2(b)
, φ′

1(b) 6= φ′
2(b) .

(iii)Boundary conditions of the third kind:

φ1(a) = 0, φ′
1(a) = −γ1

a1

φ2(a) = 1, φ′
2(a) = − (a0−γ1)

a1

From 2.27, we obtain

y′(b) = γ2 = λφ′
1(b) + (1 − λ)φ′

2(b) ,

which gives

y(b) = λφ1(b) + (1 − λ)φ′
1(b) ,

y′(b) = γ2 = λφ′
2(b) + (1 − λ)φ′

2(b) ,

Substituting in the second condition, b0y(b) + b1y
′(b) = γ2 , in 1.4, we get
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γ2 = b0[λφ1(b) + (1 − λ)φ2(b)] + b1[λφ
′
1(b) + (1 − λ)φ′

2(b)] which gives

λ =
γ2 − [b0φ2(b) + b1φ

′
2(b)]

[b0φ1(b) + b1φ′
1(b)] − [b0φ2(b) + b1φ′

2(b)]
(2.28)

The results obtained are identical in both the approaches.

Example 2.1. Using the shooting method,solve the first boundary value problem

u′′ = u+ 1, 0 < x < 1

u(0) = 0, u(1) = e− 1 .

Use the Euler-Cauchy method with h = 0.25 to solve the resulting system of

first order initial value problems. Compare the solution with the exact solution

u(x) = ex − 1 .

Since the boundary value problem is linear and nonhomogeneous, we assume

the solution in the form

u(x) = u0(x) + µ1u1(x) + µ2u2(x) (2.29)

where u0(x) satisfies the nonhomogeneous differential equation and u1(x) , u2(x)

satisfy the homogeneous differential equation. Therefore, we have

u′′0 − u0(x) = 1, u′′1(x) − u1(x) = 0 and u′′2(x) − u2(x) = 0

We assume the initial conditions as given in 2.9, that is

η0 = γ1 = 0, η∗0 = 0; η1 = 1, η∗1 = 0; η2 = 0, η∗2 = 1 , that is

u0(0) = 0, u′0(0) = 0; u1(0) = 1, u′1(0) = 0;u2(0) = 0, u′2(0) = 1 .

For the sake of illustration, we shall follow the steps in the method and ob-

tain the analytical solution also.

Solving the differential equations and using the initial conditions, we obtain
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u0(x) = (1
2
)(ex + e−x) − 1, u1(x) = (1

2
)(ex + e−x),

u2(x) =

(

1

2

)

(ex − e−x) (2.30)

Now, using 2.29, we get

u(0) = u0(0) + µ1u1(0) + µ2u2(0) = µ1 = 0

and u(1) = u0(1) + µ1u1(1) + µ2u2(1)

u(1) = u0(1) + µ2u2(1) = e− 1. (2.31)

Now, from 2.30, we obtain

u0(1) = (1
2
)(e+ e−1) − 1 , and u2(1) = (1

2
)(e− e−1) .

Hence, from 2.31, we get

µ2 = (e−1)−u0(1)
u2(1)

= 2(e−1)−(e+e−1−2)
(e−e−1)

= e−e−1

e−e−1 = 1

Therefore, the analytical solution of the problem is

u(x) = u0(x) + µ1u1(x) + µ2u2(x)

= (1
2
)(ex + e−x) − 1 + (1

2
)(ex − e−x) = ex − 1 .

This illustrates the general procedure of implementation of the method.

We now determine the solution of the initial value problem, using the Euler-

Cauchy method with h = 0.25 .

We need to solve the following three, second order initial value problems in

0 < x < 1

u′′0 − u0(x) = 1, u0(0) = 0, u′0(0) = 0 .

u′′1 − u1(x) = 0, u1(0) = 1, u′1(0) = 0 .

u′′2 − u2(x) = 0, u2(0) = 0, u′2(0) = 1 (2.32)
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We write these problems as equivalent first order systems.

Denote u0(x) = Y0(x), u
′
0(x) = Y ′

0(x) = Z0(x) ,

u1(x) = Y1(x), u
′
1(x) = Y ′

1(x) = Z1(x) ,

u2(x) = Y2(x), u
′
1(x) = Y ′

2(x) = Z2(x) .

Then, we can write 2.32 as the following systems
















Y0

Z0

















′

=

















Z0

1 + Y0

















,

















Y0(0)

Z0(0)

















=

















0

0

































Y1

Z1

















′

=

















Z1

Y1

















,

















Y1(0)

Z1(0)

















=

















1

0

































Y2

Z2

















′

=

















Z2

Y2

















,

















Y2(0)

Z2(0)

















=

















0

1

















.

Applying the Euler-Cauchy method

uj+1 = uj + 1
2
(k1 + k2)

k1 = hf(tj,uj), k2 = hf(tj + h,uj + k1)

We obtain the following systems:

System 1 We have f1 = Z0 and f2 = 1 + Y0
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















Y0,j+1

Z0,j+1

















=

















Y0,j

Z0,j

















+ h
2

















Z0,j

1 + Y0,j

















+ h
2

















Z0,j + h(1 + Y0,j)

1 + Y0,j + hZ0,j

















=

















1 + (h2/2) h

h 1 + (h2/2)

































Y0,j

Z0,j

















+

















h2/2

h

















= B(h)

















Y0,j

Z0,j

















+

















h2/2

h

















where B(h) =

















1 + (h2/2) h

h 1 + (h2/2)

















The intial conditions are Y0,0 = 0 , Z0,0 = 0 .

The systems 2 and 3 can be immediately written as
















Y1,j+1

Z1,j+1

















= B(h)

















Y1,j

Z1,j

















, Y1,0 = 1, Z1,0 = 0
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and

















Y2,j+1

Z2,j+1

















= B(h)

















Y2,j

Z2,j

















, Y2,0 = 0, Z2,0 = 1

where B(h) is same as above.

Using h = 0.25 . We obtain
















Y0,j+1

Z0,j+1

















=

















1.03125 0.25

0.25 1.03125

































Y0,j

Z0,j

















+

















0.03125

0.25

















with Y0,0 = 0 , Z0,0 = 0 . For j = 0, 1, 2, 3, we get

u0(0.25) ≈ Y0,1 = 0.03125, u′0(0.25) ≈ Z0,1 = 0.25 .

u0(0.50) ≈ Y0,2 = 0.12598, u′0(0.50) ≈ Z0,2 = 0.51563 .

u0(0.75) ≈ Y0,3 = 0.29007, u′0(0.75) ≈ Z0,3 = 0.81324 .

u0(1.00) ≈ Y0,4 = 0.53369, u′0(1.00) ≈ Z0,4 = 1.16117 .

We have
















Y1,j+1

Z1,j+1

















=

















1.03125 0.25

0.25 1.03125

































Y1,j

Z1,j

















, Y1,0 = 1, Z1,0 = 0

u1(0.25) ≈ Y1,1 = 1.03125, u′1(0.25) ≈ Z1,1 = 0.25 .

u1(0.50) ≈ Y1,2 = 1.12598, u′1(0.50) ≈ Z1,2 = 0.51563 .

u1(0.75) ≈ Y1,3 = 1.29007, u′1(0.75) ≈ Z1,3 = 0.81324 .

u1(1.00) ≈ Y1,4 = 1.53369, u′1(1.00) ≈ Z1,4 = 1.16117 .
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















Y2,j+1

Z2,j+1

















=

















1.03125 0.25

0.25 1.03125

































Y2,j

Z2,j

















, Y2,0 = 0, Z2,0 = 1

u2(0.25) ≈ Y2,1 = 0.25, u′2(0.25) ≈ Z2,1 = 1.03125 .

u2(0.50) ≈ Y2,2 = 0.51563, u′2(0.50) ≈ Z2,2 = 1.12598 .

u2(0.75) ≈ Y2,3 = 0.81324, u′2(0.75) ≈ Z2,3 = 1.29007 .

u2(1.00) ≈ Y2,4 = 1.16117, u′2(1.00) ≈ Z2,4 = 1.53369 .

From 2.11 and 2.12, we get

µ1 = 0, µ2 = γ2−u0(1)
u2(1)

= e−1−0.53369
1.16117

= 1.02017 .

We obtain the solution of the boundary value problem from

u(x) = u0(x) + 1.02017u2(x) .

The solutions at the nodal points are given in Table 5.1. The maximum absolute

error which occurs at x = 0.50 is given by

max.abs.error = 0.00329
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Table 5.1 Solution of Example 2.1

xj Exact : u(xj) uj

0.25 0.28403 0.28629

0.50 0.64872 0.65201

0.75 1.11700 1.11971

1.00 1.71828 1.71828

More accurate results can be obtained by using smaller step length h .

Alternate Method

To apply the alternate method, we solve the two initial value problems

u′′1 = u1 + 1, u1(0) = 0, u′1(0) = 0

and u′′2 = u2 + 1, u2(0) = 0, u′2(0) = 1 .

We can also take the initial condition u′1(0) as u′1(0) = α , α 6= 0, 1 . Therefore,

we obtain the equations (see equations of systems 1)
















Yi,j+1

Zi,j+1

















=

















1.03125 0.25

0.25 1.03125

































Yi,j

Zi,j

















+

















0.03125

0.25

















where Y1 = u1 and Z2 = u2 .

Using the conditions Y1,0 = 0 , Z1,0 = 0 , we obtain
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















Y1,1

Z1,1

















=

















0.03125

0.25

















,

















Y1,2

Z1,2

















=

















0.12598

0.51563

















,

















Y1,3

Z1,3

















=

















0.29007

0.81324

















,

















Y1,4

Z1,4

















=

















0.53369

1.16117

















,

Using the conditions Y2,0 = 0 , Z2,0 = 1 , we obtain
















Y2,1

Z2,1

















=

















0.28125

1.28125

















,

















Y2,2

Z2,2

















=

















0.64160

1.64160

















,

















Y2,3

Z2,3

















=

















1.10330

2.10330

















,

















Y2,4

Z2,4

















=

















1.69485

2.69485

















,

From 2.27, we get

λ = (e−1)−Y2,4

Y1,4−Y2,4
= e−1−1.69485

0.53369−1.69485
= −0.02019

Hence, u(x) = −0.02019 Y1(x) + 1.02019 Y2(x) .

Substituting x = 0.25, 0.5, 0.75 and 1.0 , we get

u(0.25) ≈ 0.28630, u(0.50) ≈ 0.65201, u(0.75) ≈ 1.11972, u(1.0) ≈ 1.71829 .

These values are same as given in Table 5.1, except for the round off error in the

last digit.
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Example 2.2. Use the shooting method to solve the mixed boundary value

problem

u′′ = u− 4xex, 0 < x < 1,

u(0) − u′(0) = −1, u(1) + u′(1) = −e.

Use the Taylor series method

uj+1 = uj + hu′j + h2

2
u′′j + h3

6
u′′′j

u′j+1 = u′j + hu′′j + h2

2
u′′′j

to solve the initial value problems. Assume h = 0.25. Compute with the exact

solution u(x) = x(1 − x)ex.

We assume the solution in the form

u(x) = u0(x) + µ1u1(x) + µ2u2(x)

where u0(x), u1(x) and u2(x) satisfy the differential equations

u′′0 − u0 = −4xex, u′′1 − u1 = 0,

u′′2 − u2 = 0.

The initial conditions may be assumed as given in 2.9;

u0(0) = 0, u′0(0) = 0,

u1(0) = 1, u′1(0) = 0,

u2(0) = 0, u′2(0) = 1.

To illustrate the solution procedure, we solve analytically the initial value prob-

lems. The analytical solutions of the above initial value problems are given by

u0(x) = (1/2)e−x − ex(x2 − x+ (1/2))

u1(x) = (1/2)(ex + e−x), u2(x) = (1/2)(e2 − e−x).

We also have

u(0) = u0(0) + µ1u1(0) + µ2u2(0) = µ1.

u′(0) = u′0(0) + µ1u
′
1(0) + µ2u

′
2(0) = µ2.
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u0(1) = −(1/2)(e− e−1), u1(1) = (1/2)(e+ e−1), u2(1) = (1/2)(e− e−1).

u′0(1) = −(1/2)(3e+ e−1), u′1(1) = (1/2)(e− e−1), u′2(1) = (1/2)(e+ e−1),

u(1) = u0(1) + µu1(1) + µ2u2(1)

= (1/2)(e−1 − e) + (1/2)µ1(e− e−1) + (1/2)µ2(e− e−1).

u′(1) = u′0(1) + µ1u
′
1(1) + µ2u

′
2(1)

= −(1/2)(3e− e−1) + (1/2)µ1(e− e−1) + (1/2)µ2(e+ e−1).

Substituting into the boundary conditions, we get the relations

µ2 − µ1 = 1, µ2 + µ1 = 1, or µ1 = 0, µ2 = 1.

Thus, the initial conditions are given by u(0) = 0, u′(0) = 1.

We now solve the three, second order initial value problems

u′′(0) = u0 − 4xex, u0(0) = 0, u′0(0) = 0,

u′′1 = u1, u1(0) = 1, u′1(0) = 0,

u′′2 = u2, u2(0) = 0, u′2(0) = 1.

by using the given Taylor series method with h = 0.25. We have the following

results.

(i) i = 0, u0,0 = 0, u′0,0 = 0.

u′′0,j = u0,j − 4xje
xj , u′′′0,j = u′0,j − 4(xj + 1)exj , j = 1, 2, 3.

Hence,

u0,j+1 = u0,j + hu′0,j + h2

2
(u0,j − 4xje

xj) + h3

6
[u′0,j − 4(xj + 1)exj ]

= (1 + h2

2
)u0,j + (h+ h3

6
)u′0,j − [2

3
h3(1 + xj) + 2h2xj]e

xj

= 1.03125u0,j + 0.25260u′0,j + (0.13542xj + 0.01042)exj

u′0,j+1 = u′0,j + h[u0,j − 4xje
xj ] + h2

2
[u′0,j − 4(xj + 1)exj ]

= hu0,j + (1 + h2

2
)u′0,j − 2[2hxj + h2(1 + xj)]e

xj

= 0.25u0,j + 1.03125u′0,j − 2(0.5625xj + 0.0625)exj

Hence,

u0(0.25) ≈ u0,1 = −0.01042, u′(0.25) ≈ u′0,1 = −0.12500,
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u0(0.50) ≈ u0,2 = −0.09917, u′(0.50) ≈ u′0,2 = −0.65315,

u0(0.75) ≈ u0,3 = −0.39606, u′(0.75) ≈ u′0,3 = −1.83185,

u0(1.00) ≈ u0,4 = −1.10823, u′(1.00) ≈ u′0,4 = −4.03895.

(ii) i = 1, u1,0 = 1, u′1,j, j = 1, 2, 3.

u1,j+1 = u1,j + hu′1,j + h2

2
u1,j + h2

6
u′1,j.

= (1 + h2

2
)u1,j + (h+ h2

6
)u′1,j.

= 1.03125u1,j + 0.25260u′1,j .

u′1,j+1 = u′1,j + hu1,j + h2

2
u′1,j

= hu1,j + (1 + h2

2
)u′1,j = 0.25u1,j + 1.03125u′1,j .

Hence

u1(0.25) ≈ u1,1 = 1.03125, u′1(0.25) ≈ u′1,1 = 0.25,

u1(0.50) ≈ u1,2 = 1.12663, u′1(0.50) ≈ u′1,2 = 0.51563,

u1(0.75) ≈ u1,3 = 1.29209, u′1(0.75) ≈ u′1,3 = 0.81340,

u1(1.00) ≈ u1,4 = 1.53794, u′1(1.00) ≈ u′1,4 = 1.16184.

(iii) i = 2, u2,0 = 0, u′2,0 = 1.

u′′2,j = u2,j, u
′′′
2,j = u′2,j, j = 1, 2, 3.

Since the differential equation is same as for u1, we get

u2,j+1 = 1.03125u2,j + 0.25260u′2,j

u′2,j+1 = 0.25u2,j + 1.03125u′2,j

Hence,

u2(0.25) ≈ u2,1 = 0.25260, u′2(0.25) ≈ u′2,1 = 1.03125,

u2(0.50) ≈ u2,2 = 0.52099, u′2(0.50) ≈ u′2,2 = 1.12663,

u2(0.75) ≈ u2,3 = 0.82186, u′2(0.75) ≈ u′2,3 = 1.29208,

u2(0.25) ≈ u2,4 = 1.17393, u′2(1.00) ≈ u′2,4 = 1.53792.

From (7.20) and the given boundary conditions, we have

a0 = a1 = 1, b0 = b1 = 1, γ1 = −1, γ2 = −e.
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µ1 − µ2 = −1

[u1(1) + u′1(1)]µ1 + [u2(1) + u′2(1)]µ2 = −e− [u0(1) + u′0(1)]

or 2.69978µ1 + 0.271185µ2 = 2.42890.

Solving these equations, we obtain µ1 = −0.05229, µ2 = 0.94711. We obtain the

solution of the boundary value problem from

u(x) = u0(x) − 0.05229u1(x) + 0.94771u2(x).

The solution at the nodal points are given in Table 5.2. The maximum absolute

error which occurs at x = 0.75, is given by

max. abs. error = 0.08168.

Table 5.2 Divided Difference (d.d) Table

xj Exact : u(xj) uj

0.25 0.24075 0.17505

0.50 0.41218 0.33567

0.75 0.39694 0.31526

1.00 0.0 −0.07610

2.3 Nonlinear Second Order Differential Equations

We now consider the nonlinear differential equation

y” = f(x, y, y′), a < x < b
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subject to one of the boundary conditions (1.2) to (1.4). Since the differential

equation is non linear, we cannot write the solution in the form y(x) = φ0(x) +

µ1φ1(x) +µ2φ2(x) or (2.27). Depending on the boundary conditions, we proceed

as follows :

Boundary condition of the first kind :

We have the boundary conditions as y(a) = γ1 and y(b) = γ2 .

We assume y′(a) = s and solve the initial value problem y” = f(x, y, y′) ,

y(a) = γ1, y
′(a) = s (2.33)

upto x = b using any numerical method. The solution, y(b, s) of the initial value

problem should satisfy the boundary condition at x = b . Let

φ(s) = y(b, s) − γ2 (2.34)

Hence, the problem is to find s , such that f(s) = 0 .

Boundary conditions of the second kind:

We have the boundary conditions as y′(a) = γ1 and y′(b) = γ2 . We assume

y(a) = s and solve the initial value problem

y” = f(x, y, y′)y(a) = s, y′(a) = γ1 (2.35)

upto x = b using any numerical method. The solution y(b, s) of the initial value

problem should satisfy the boundary condition at x = b . Let

φ(s) = y′(b, s) − γ2. (2.36)

Hence, the problem is to find s , such that f(s) = 0 .
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Boundary condition of the third kind:

We have the boundary conditions as a0y(a) − a1y
′(a) = γ1 , and b0y(b) +

b1y
′(b) = γ2 . Here, we can assume the value of y(a) or y′(a) . Let y′(a) = s .

Then, from

a0y(a) − a1y
′(a) = γ1 ,

we get y(a) = (a1s+γ1)
a0

.

We now solve the initial value problem y′′ = f(x, y, y′)

y(a) =
1

a0

(a1s+ γ1), y
′(a) = s (2.37)

upto x = b using any numerical method. The solution y(b, s) of the initial value

problem should satisfy the boundary condition at x = b . Let

φ(s) = b0y(b, s) + b1y
′(b, s) − γ2. (2.38)

Hence, the problem is to find s , such that φ(s) = 0 . The function φ(s) in 2.36

or 2.34 or 2.38 is a nonlinear function in s . We solve the equation

φ(s) = 0 (2.39)

by using any iterative method discussed in Unit III. λ =
γ2−φ′

2(b)

φ′

1(b)−φ′

2(b)
, φ′

1(b) 6= φ′
2(b) .

2.4 Secant Method

The iteration method for solving φ(s) = 0 is given by

s(k+1) = s(k) −
[

s(k) − s(k−1)

φ(s(k) − φ(s(k−1))

]

φ(s)(k) (2.40)

which s(0) and s(1) are two initial approximations to s . We solve the initial

value problem 2.33 or 2.35 or 2.37 with two guess values of sand keep iterating

till |φ(s(k+1)| < (given error tolerance).
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2.5 Newton-Raphson Method

The iteration method for solving φ(s) = 0 is given by

s(k+1) = s(k) − φ(s(k))

φ′(s(k))
, k = 0, 1, 2, . . . (2.41)

where s(0) is some initial approximation to s . To determine φ′(s(k)) , we proceed

as follows : Denote ys = y(x, s), y′s = y′(x, s), y”s = y”(x, s) . Then, we can write

2.37 as

y′′s = f(x, ys, y
′
s) (2.42)

ys(a) =
1

a0

(a1s+ γ1), y
′
s(a) = s. (2.43)

Differentiating 2.42 partially with respect to s , we get

∂
∂s

(y′′s ) = ∂f
∂x

∂x
∂s

+ ∂f
∂ys

∂ys

∂s
+ ∂f

∂y′

s

∂y′

s

∂s

=
∂f

∂ys

∂ys

∂s
+
∂f

∂y′s

∂y′s
∂s

(2.44)

since x is independent of s . Differentiating 2.43 partially with respect to s , we

get
∂

∂s
[ys(a)] =

a1

a0

,
∂

∂s
[y′s(a)] = 1. (2.45)

Let v = ∂ys

∂s
. Then,we have

v′ = ∂v
∂x

= ∂
∂x

(

∂ys

∂s

)

= ∂
∂s

(

∂ys

∂x

)

= ∂
∂s

(y′s)

v′′ = ∂v′

∂x
= ∂

∂x

[

∂
∂s

(

∂ys

∂x

)]

= ∂
∂s

[

∂2ys

∂x2

]

= ∂
∂s

(y′′s )

From 2.43 and 2.44, we obtain

v′′ =
∂f

∂ys

(x, ys, y
′
s)v +

∂f

∂y′s
(x, ys, y

′
s)v

′ (2.46)

v(a) =
a1

a0

, v′(a) = 1. (2.47)

The differential equation 2.46 is called the first variational equation. It can be

solved step by step along with 2.43, that is, 2.43 and 2.46,2.47 can be solved
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together as a single system. When the computation of one cycle is completed,

v(b) and v′(b) are available. Now, from 2.38, at x = b , we have

dφ

ds
= b0

∂ys

∂s
+ b1

∂y′s
∂s

= b0v(b) + b1v
′(b). (2.48)

Thus, we have the value of φ′(s(k)) to be used in 2.41. If the boundary conditions

of the first kind are given, then we have

a0 = 1, a1 = 0, b0 = 1, b1 = 0 and φ(s) = ys(b) − γ2. (2.49)

The initial conditions (2.45), on v become

v(a) = 0, v′(a) = 1 .

Then, we have from (2.48)
dφ

ds
= v(b). (2.50)

Example 2.3. Use the shooting method to solve the boundary value problem

u′′ = 2uu′, 0 < x < 1

u(0) = 0.5, u(1) = 1.

Use the Taylor series method

uj+1 = uj + hu′j + h2

2
u′′j + h3

6
u′′′j

u′j+1 = u′j + hu′′j +
h2

2
u′′′j (2.51)

to solve the corresponding initial value problems and the secant method for the

iteration. Iterate until tolerance is less than 0.005. Assume h = 0.25 Compare

with the exact solution u(x) = 1/(2 − x) . Let the starting value of the slope at

x = 0 be taken as u′(0) = s(0) = 0.5 . Therefore, we need to solve the initial

value problem

u′′ = 2uu′
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u(0) = 0.5, u′(0) = s(0) = 0.5 .

Using the given Taylor series method and substituting

u′′j = 2uju
′
j, u

′′′
j = 2[(u′j)

2 +uju
′′
j ] with h = 0.25, u0 = 0.5, u′0 = 0.5 , in (2.51) , we

obtain

uj+1 = uj + hu′j + h2

2
(2uju

′
j) + h3

3
[(u′j)

2 + uju
′′
j ]

=uj + 0.25u′j + 0.0625uju
′
j + 0.00521[(u′j)

2 + uju
′′
j ]

uj+1 = uj + 0.25u′j + 0.0625uju
′
j + 0.00521[(u′j)

2 + 2(uj)
2u′j] (2.52)

u′j+1 = u′j + h(2uju
′
j) + h2[(u′j)

2 + uj(2uju
′
j)]

u′j+1 = u′j + 0.5uju
′
j + 0.0625[(u′j)

2 + 2(uj)
2u′j] (2.53)

We obtain from (2.52) and (2.53), for j = 0, 1, 2, 3

u(0.25) ≈ u1 = 0.64323, u′(0.25) ≈ u′1 = 0.65625 ,

u(0.50) ≈ u2 = 0.83875, u′(0.50) ≈ u′2 = 0.92817 ,

u(0.75) ≈ u3 = 1.13074, u′(0.75) ≈ u′3 = 1.45289 ,

u(1.0) ≈ u4 = 1.62699, u′(1.0) ≈ u′4 = 2.63844 .

From (2.49), we get φ(s(0)) = u(1, s(0)) − 1.0 = 0.62699 .

We now take another value of the slope at x = 0 as u′(0) = s(1) = 0.1 .

Therefore, we need to solve the equations (2.53) with u0 = 0.5 and u′0 = 0.1 .

We obtain, for j = 0, 1, 2, 3 .

u(0.25) ≈ u1 = 0.52844, u′(0.25) ≈ u′1 = 0.12875 ,

u(0.50) ≈ u2 = 0.56534, u′(0.50) ≈ u′2 = 0.16830 ,

u(0.75) ≈ u3 = 0.61407, u′(0.75) ≈ u′3 = 0.22437 ,

u(1.0) ≈ u4 = 1.67991, u′(1.0) ≈ u′4 = 0.30698 .

From (2.49), we get φ(s(1)) = u(1, s(1)) − 1.0 = −0.32009 .

Using the secant method (2.40), we obtain
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s(2) = s(1) −
[

s(1)−s(0)

φ(s(1)−φ(s(0))

]

φ(s(1)) = 0.1 −
[

0.1−0.5
−0.32009−0.62699

]

(−0.32009) = 0.23519 .

Now, we solve the equations (2.53) with u0 = 0.5 and u′0 = 0.23519 . We

obtain, for j = 0, 1, 2, 3

u(0.25) ≈ u1 = 0.56705, u′(0.25) ≈ u′1 = 0.30479 ,

u(0.50) ≈ u2 = 0.65555, u′(0.50) ≈ u′2 = 0.40926 ,

u(0.75) ≈ u3 = 0.77734, u′(0.75) ≈ u′3 = 0.57586 ,

u(1.0) ≈ u4 = 0.95464, u′(1.0) ≈ u′4 = 0.86390 ,

From (2.49), we get φ(s(2)) = u(1, s(2)) − 1.0 = −0.04536 .

Using the secant method we obtain

s(3) = s(2) −
[

s(2)−s(1)

φ(s(2)−φ(s(1))

]

φ(s(2)) = 0.23519 −
[

0.23519−0.1
−0.04536+0.32009

]

(−0.04536) = 0.25751 .

we solve the equations (2.53) with u0 = 0.5 and u′0 = 0.25751 . We obtain, for

j = 0, 1, 2, 3

u(0.25) ≈ u1 = 0.57344, u′(0.25) ≈ u′1 = 0.33408 ,

u(0.50) ≈ u2 = 0.67066, u′(0.50) ≈ u′2 = 0.45058 ,

u(0.75) ≈ u3 = 0.80536, u′(0.75) ≈ u′3 = 0.63969 ,

u(1.0) ≈ u4 = 1.00394, u′(1.0) ≈ u′4 = 0.97472 ,

From (2.49), we get φ(s(3)) = u(1, s(3)) − 1.0 = 0.00394 < 0.005 . The iteration

is now stopped.

The numerical and exact solutions are given in Table 5.3 . The maximum

absolute error in the solutions occurs at x = 0.75 and its value is max. abs.

error=0.00536.
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Table 1: Solution of Example 2.51

x Exact : u(x) uj

0.25 0.57143 0.57344

0.50 0.66667 0.67066

0.75 0.80000 0.80536

1.00 1.00000 1.00394

Example 2.4. Use the shooting method to solve the boundary value problem

u′′ = 2uu′, 0 < x < 1 ,

u(0) = 0.5, u(1) = 1 ,

Use the two stage Runge-Kutta method

k1 = h2

2
f(xj, uj, u

′
j)

k2 = h2

2
f(xj + 2

3
hu′j + 2

3
k1, u

′
j + 4

3h
k1)

uj+1 = uj + hu′j + 1
2
(k1 + k2)

u′j+1 = u′j + 1
2h

(k1 + 3k2)

with h = 0.25 , to solve the corresponding initial value problem. Use Newton’s

method, assuming the starting value of the slope at x = 0 as (s(0)) = u′(0) = 0.3 .

Perform two iterations and compare with the exact solution u(x) = 1/(2 − x) .

We have (s(0)) = u′(0) = 0.3, u0 = 0.5 .

The boundary value problem occuring in the application of the Newton-Raphson
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method is given by (see Eqs.(2.46)(2.47)

v′′ = 2(u′v + uv′)

v(0) = 0, v′(0) = 1. (2.54)

We solve the boundary value problems for u and v simultaneously. We have

(i)k1 = h2uju
′
j

k2 = h2
(

uj + 2
3
hu′j + 2

3
k1

) (

u′j + 4
3h
k1

)

uj+1 = uj + hu′j + 1
2
(k1 + k2)

u′j+1 = u′j + 1
2h

(k1 + 3k2)

(ii)k∗1 = h2[u′jvj + ujv
′
j]

k∗2 = h2[u′j(vj + 2
3
hv′j + 2

3
k∗1) + uj(v

′
j + 4

3h
k∗1)]

vj+1 = vj + hv′j + 1
2
(k∗1 + k∗2)

v′j+1 = v′j + 1
2h

(k∗1 + 3k∗2)

First iteration

We have the following results for h = 0.25 .

For j = 0 : u0 = 0.5, u′0 = 0.3, v0 = 0, v′0 = 1, h = 0.25 .

k1 = 0.009375, k2 = 0.01217, u1 = 0.58577, u′1 = 0.39177 .

k∗1 = 0.03125, k∗2 = 0.03997, v1 = 0.28561, v′1 = 1.30232 .

For j = 1 : k1 = 0.001434, k2 = 0.01933, u1 = 0.70055, u′1 = 0.53643 .

k∗1 = 0.05467, k∗2 = 0.07155, v1 = 0.67430, v′2 = 1.84096 .

For j = 2 : k1 = 0.02349, k2 = 0.03332, u3 = 0.86306, u′3 = 0.78333 .

k∗1 = 0.10321, k∗2 = 0.13991, v3 = 1.25610, v′3 = 2.88684 .

For j = 3 : k1 = 0.04225, k2 = 0.06441, u4 = 1.11222, u′4 = 1.25429 .

k∗1 = 0.21722, k∗2 = 0.31035, v4 = 2.24160, v′4 = 5.18338 .

Hence, we obtain from (2.34) and (2.50)

φ(s(0)) = u(b) − 1.0 = u4 − 1.0 = 1.11222 − 1.0 = 0.11222

and dφ(s(0))
/

ds = v(b) = v4 = 2.24160 .
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Newton-Raphson method gives the next approximation to the slope at x = 0 as

s(1) = s(0) − φ(s(0))

φ′(s(0))

= 0.3 − 0.11222
2.24160

= 0.24994 .

Second iteration

We have the following results for h = 0.25 .

For j = 0 : u0 = 0.5, u′0 = 0.24994, v0 = 0, v′0 = 1, h = 0.25 .

k1 = 0.00781, k2 = 0.00997, u1 = 0.57138, u′1 = 0.32538 .

k∗1 = 0.03125, k∗2 = 0.03939, v1 = 0.28532, v′1 = 1.29884 .

For j = 1 : k1 = 0.01162, k2 = 0.01533, u2 = 0.66620, u′2 = 0.44060 .

k∗1 = 0.05219, k∗2 = 0.06724, v2 = 0.66975, v′2 = 1.80666 .

For j = 2 : k1 = 0.01385, k2 = 0.02530, u3 = 0.79818, u′3 = 0.62910 .

k∗1 = 0.09367, k∗2 = 0.12448, v3 = 1.23049, v′3 = 2.74088 .

For j = 3 : k1 = 0.03138, k2 = 0.04599, u4 = 0.99414, u′4 = 0.96780 .

k∗1 = 0.18511, k∗2 = 0.25718, v4 = 2.13686, v′4 = 4.65418 .

Hence, we have

φ(s(1)) = u(b) − 1.0 = u4 − 1.0 = 0.99414 − 1.0 = −0.00586

and dφ(s(1))
/

ds = v(b) = 2.13686 .

Newton-Raphson method gives the next approximation to the slope at x = 0 as

s(2) = s(1) − φ(s(1))

φ′(s(1))
= 0.24994 + 0.00586

2.13686
= 0.25268 .

We now solve only for u in the third iteration.

For j = 0 : uo = 0.5, u′0 = 0.25268

k1 = 0.00790, k2 = 0.01009, u1 = 0.57217, u′1 = 0.32902 .

For j = 1 : k1 = 0.01177, k2 = 0.01555, u2 = 0.66809, u′2 = 0.44586 ,

For j = 2 : k1 = 0.01862, k2 = 0.02572, u3 = 0.80173, u′3 = 0.63742 .

For j = 3 : k1 = 0.03194, k2 = 0.04691, u4 = 1.00051, .

Now, error in satisfying the boundary condition at x = 1 is
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error=u(1) − u4 = 1.0 − 1.00051 = 0.00051 .

The solutions at the mesh points are

u(0.25) ≈ u1 = 0.57217, , u(0.5) ≈ u2 = 0.66809, u(0.75) ≈ u3 = 0.80173 .

The exact solution is

u(0.25) ≈ u1 = 0.57143, u(0.5) = 0.66667, u(0.75) = 0.80000 .

The maximum absolute error in the solutions which occurs at x = 0.75 , is

max.abs.error=0.00173.

3 Finite Differenece Methods

Let the interval [a, b] be divided into N + 1 subintervals, such that

xj = a+ jh, j = 1, 2, . . . , N + 1

where x0 = a, xN+1 = b and h = (ba)/(N + 1) .

3.1 Linear Second Order Differential Equations

We consider the linear second order differential equation

y′′ + p(x)y′ + q(x)y = r(x) (3.1)

subject to the boundary conditions of the first kind

y(a) = γ1, y(b) = γ2. (3.2)

Using the second order finite difference approximations

y′(xj) ∼= 1
2h

[yj+1 − yj−1],

y′′(xj) ∼= 1
h2 [yj+1 − 2yj + yj−1] , at x = xj , we obtain the difference equation

− 1

h2
(yj+1 − 2yj + yj1) +

1

2h
(yj+1 − yj1)p(xj) + q(xj)yj = r(xj) (3.3)
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j = 1, 2, . . . , N .

The boundary conditions 3.2 become y0 = γ1, yN+1 = γ2 . Multiplying 3.3 by

h2/2 , we obtain

Ajyj1 +Bjyj + Cjyj+1 =
h2

2
r(xj), j = 1, 2, . . . , N (3.4)

where Aj = −1
2
(1 + h

2
p(xj)), Bj = (1 + h2

2
q(xj)), Cj = −1

2
(1 − h

2
p(xj)) .

The system 3.4 in matrix notation, after incorporating the boundary conditions,

becomes

Ay = b (3.5)

where y = [y1, y2, . . . , yN ]T

b = h2

2
[r(x1) − 2A1γ1

h2 , r(x2), . . . , r(xN−1, r(xN) − 2CNγ2

h2 ]T

A=





















































B1 C1 0

A2 B2 C2

. . . . . . . . . . . . . . .

AN−1 BN−1 CN−1

0 AN BN





















































The solution of this system of lin-

ear equations gives the finite difference solution of the differential equation 3.1

satisfying the boundary conditions 3.2.
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3.2 Local Truncation Error

The local truncation error of 3.4 is defined by

Tj = Ajy(xj1) +Bjy(xj) + Cjy(xj+1) −
h2

2
r(xj) (3.6)

Expanding each term on the right hand side Taylors series about xj , we get Tj =

−h2

24
[y(4)(ψ1) − 2p(xj)y

(3)(ψ2)], j = 1, 2, . . . , N where ψ1 ∈ (xj−1, xj+1), ψ2 ∈
(xj−1, xj+1) .

The largest value of p for which the relation

Tj = 0(hp+2) (3.7)

holds is called the order of the difference method. Therefore, the method is of

second order.

3.3 Fourth Order Method when y′ is Absent in 3.1

Consider the differential equation

−y′′ + q(x)y = r(x), a < x < b (3.8)

subject to the boundary conditions of the first kind uation

y(a) = γ1, y(b) = γ2. (3.9)

We write the differential equation as

y′′ = q(x)y − r(x) = f(x, y) (3.10)

A fourth order difference approximation for 3.10 is obtained as

yj1 − 2yj + yj+1 =
h2

12
(y′′j−1 + 10y′′j + y′′j+1), j = 1, 2, . . . , N, (3.11)
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which is also called the Numerv method. We can also write the method as

[1−h
2

12
qj−1]uj−1−[2+

5

6
h2qj]uj+[1−h

2

12
qj+1]uj+1 = −h

2

12
[rj−1+10rj+rj+1] (3.12)

where ri = r(xi), qi = q(xi), i = j1, j, j+1 . The truncation error associated with

3.11 is given by Tj = − h6

240
y(6)(xi), xj−1 < (ψ)xj−1 < xi < xj+1,

Example 3.1. Solve the boundary value problem

u′′ = u+ x

u(0) = 0, u(1) = 0

with h = 1/4 . Use the following methods

(i) the second order method, (ii) the Numerov method.

We divide the interval [0, 1] into four subintervals. The nodal points are xj = jh ,

j = 0, 1, 2, 3, 4 and h = 1/4 .

(i) The second order method gives the following system of equations

uj−1−2uj+uj+1

h2 = uj + xj, j = 1, 2, 3.

Multiplying by −h2 we obtain

−uj−1 + 2uj − uj+1 = −h2(uj + xj), j = 1, 2, 3.

For h = 1/4 , we get

−16uj−1 + 33uj − 16uj+1 = −xj .

We have

for j = 1 : − 16u0 + 33u1 − 16u2 = −0.25 .

for j = 2 : − 16u1 + 33u2 − 16u3 = −0.50 .

for j = 3 : − 16u2 + 33u3 − 16u4 = −0.75 .

Using the boundary conditions u0 = u4 = 0 , we get the system of equations
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



























33 −16 0

−16 33 −16

0 −16 33

























































u1

u2

u3





























= −





























0.25

0.50

0.75





























which gives

u1 = −0.034885, u2 = −0.056326, u3 = −0.050037 .

(ii) The Numerov method(3.11), with q(x) = 1, r(x) = −x, h = 1/4 gives the

following system of equations

uj−1−2uj +uj+1 = 1
192

[(uj−1 + xj−1) + 10(uj + xj) + (uj+1 + xj+1)] , j = 1, 2, 3 .

or 191uj−1 − 394uj + 191uj+1 = xj−1 + 10xj + xj+1 .

We have

for j = 1 : 191u0 − 394u1 + 191u2 = 3 .

for j = 2 : 191u1 − 394u2 + 191u3 = 6 .

for j = 3 : 191u2 − 394u3 + 191u4 = 9 .

Using the boundary conditions u0 = u4 = 0 , we get the system of equations

− 394u1 + 191u2 = 3

191u1 − 394u2 + 191u3 = 6

− 191u2 − 394u3 = 9

which gives

u(0.25) ≈ u1 = −0.0350481, u(0.50) ≈ u2 = −0.0565914, u(0.75) ≈ u3 = −0.0502765 .

The exact solution is u(x) = [(sinhx/sinh1) − x] and the exact values are

u(0.25) = −0.0350476, u(0.50) = −0.0565906, u0.75 = −0.0502758 .

The errors at the nodal points are

Second order method:
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|ǫ(0.25)| = 0.000163, |ǫ(0.50)| = 0.00265, |ǫ(1.0)| = 0.000239 .

Numerov method

|ǫ(0.25)| = 0.0000005, |ǫ(0.50)| = 0.0000008, |ǫ(1.0)| = 0.0000007 .

Example 3.2. Solve the boundary value problem

u′′ = xu

u(0) + u′(0) = 1, u(1) = 1

with h = 1/3 . Use the second order method

uj−1 − 2uj + uj+1 = h2fj .

With h = 1/3 , we have four nodal points xj = jh, j = 0, 1, 2, 3 that is

0, 1/3, 2/3, 1 . The second order method gives the following system of equations

uj−1 − 2uj + uj+1 = 1
9
xjuj, j = 0, 1, 2, 3 .

We have

for j = 0 : u−1 − 2u0 + u1 = 0 .

for j = 1 : u0 − 2u1 + u2 = ( 1
27

)u1 .

for j = 2 : u1 − 2u2 + u3 = ( 2
27

)u2 .

Since the method is of second order, we may replace u′(0) in the boundary

condition by the approximation

u′(0) = (u1 − u−1)/(2h)

which is also of second order. Thus,the boundary conditions become

u0 + (3/2)(u1 − u−1) = 1 and u3 = 1 .

Eliminating u−1 , we get the equations

− 2u0 + 3u1 = 1

u0 − (55/27)u1 + u2 = 0

u1 − (56/27)u2 = −1 .

Solving the system of equations we get

u(0) ≈ u0 = −0.9879518, u(1/3) ≈ u1 = −0.3253012 ,
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u(2/3) ≈ u2 = −0.3253012

Example 3.3. Solve the boundary value problem

u′′ = u− 4xex, 0 ≤ x ≤ 1

u(0) − u′(0) = −1, u(1) + u′(1) = −e
using the Numerov method, with h = 1/3 . Use suitable fourth order ap-

proximations to the boundary conditions. Compare with the exact solution

u(x) = x(1 − x)ex .

Comparing the given differential equation with 3.10, we get q(x) = 1, d(x) =

4xe−x . With h = 1/3 , we have the mesh points as 0, 1/3, 2/3, 1 .

At the interior points, we have from 3.12
(

1 − 1
108

)

uj−1−
(

2 + 5
54

)

uj+
(

1 − 1
108

)

uj+1 = − 4
108

[xj−1e
xj−1 + 10xje

xj + xj+1e
xj+1 ]

or 107uj−1−226uj+107uj+1 = −4 [xj−1e
xj−1 + 10xje

xj + xj+1e
xj+1 ] , j = 1, 2

We now derive the discretization of the boundary condition at x = 0 . From

1

h
(u1 − u0) −

h

6

[

u′′0 + 2u′′1/2

]

=
1

a1

(a0u0 − γ1) , (3.13)

we get

1
h
(u1 − u0) − h

6
[u′′0 + 2u′′1/2] = 1

a1
(a0u0.γ1)

or 3(u− u0) − 1
18

[u′′0 + 2u′′1/2] = 1 + u0 .

From u1/2 = u0 + h
2
u′0 + h2

8
u′′0 , we get

u1/2 = u0 + h
2
u′0 + h2

8
u′′0 = u0 + 1

6
u′0 + 1

72
u′′0

Now, u′′0 = f(0, u0) = u0 and u′0 = 1 + u0 .

Therefore,

u1/2 = u0 + 1
6
(1 + u0) + 1

72
u′′0 = 1

72
(85u0 + 12)

u′′1/2 = f(x1/2, u1/2) = u1/2 − 4x1/2e
x1/2
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= u1/2 − 2
3
ex1/2 = 1

72
(85u0 + 12) − 2

3
e1/6

Hence, we have at x = 0

3(u1 − u0) − 1
18

[

u0 + 1
36

(85u0 + 12) − 4
3
e1/6

]

= 1 + u0

or −4.18673u0 + 3u1 = 0.93101 .

For j = 1 , we get

107u0 − 226u1 + 107u2 = −4
[

0 + 10
3
e1/3 + 2

3
e2/3

]

= −23.80212 .

For j = 2 , we get

107u1 − 226u2 + 107u3 = −4
[

1
3
e1/3 + 20

3
e2/3 + e

]

= −64.67351 .

We now derive the discretization at x = 1 .

From 1
h

(uN+1 − uN) + h
6

(

2u′′N+1/2 + u′′N+1

)

= 1
b1

(γ2 − b0uN+1) , we get (with

N=2)

1
h
(u3 − u2) + h

6
(2u′′5/2 + u′′3) = 1

b1
(γ2 − b0u3)

or 3(u3 − u2) + 1
18

(2u′′5/2 + u′′3) = −e− u3 .

Now, u′′3 = f(x3, u3) = u3 − 4x3e
x3 = u3 − 4e .

From uN+1/2 = uN+1 − h
2
u′N+1 + h2

8
u′′N+1 , we get (with N=2)

u5/2 = u3 − 1
6
u′3 + 1

72
u′′3

= u3 + 1
6
(e+ u3) + 1

72
(u3 − 4e)

= 1
72

(85u3 + 8e) = 1.18056u3 + 0.30203 .

u′′5/2 = f(x5/2, u5/2) = u5/2 − 4x5/2e
x5/2

= 1
72

(85u3 + 8e) − 10
3
e5/6

= 1.18056u3 + 7.36789 .

Therefore, we get

3(u3 − u2) + 1
18

[2(1.18056u3 − 7.36789) + u3 − 4e] = −e− u3
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or −3u2 + 4.18673u3 = −1.29556 .

Hence, we have the system of equations

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








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













−4.18673 3 0 0

107 −226 107 0

0 107 −226 107
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u1

u2
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
















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
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
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




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
























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






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

0.93101

−23.80212

−64.67351

−1.29556
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





































We solve the system by Gauss-elimination. The solution is obtained as

u0 = 0.00076 , u1 = 0.31140 , u2 = 0.43350 , u3 = 0.00190 .

The exact solution is u(0) = 0, u(1/3) = 0.31014, u(2/3) = 0.43283 and u(1) =

0 . The maximum absolute error is 0.0019.

3.4 Nonlinear Second Order Differential Equations y′′ =

f(x, y)

We consider the nonlinear second order differential equation

y′′ = f(x, y), a < x < b (3.14)

subject to one of the boundary conditions (1.2) to (1.4). Since the differential

equation is non linear, we cannot write the solution in the form y(x) = φ0(x) +

µ1φ1(x) +µ2φ2(x) or (2.27). Depending on the boundary conditions, we proceed
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as follows :

Boundary condition of the first kind :

We have the boundary conditions as y(a) = γ1 and y(b) = γ2 .

Example 3.4. Solve the boundary value problem

u′′ = 3
2
u2

u(0) = 4, u(1) = 1

with h = 1/3. Use a second order finite difference method for its solution.

With h = 1/3, we have four nodal points xj = jh, j = 0, 1, 2, 3, that is ,

0, 1/3, 2/3, 1. The values at the end points x0 and x3 are given by the boundary

conditions, that is, we are given that u0 = 4, u3 = 1. The second order finite

difference method gives the following system of equations

uj−1 − 2uj + uj+1 = (u2
j)/6, j = 1, 2.

For j = 1 : u0 − 2u1 + u2 = (u2
1)/6.

For j = 2 : u1 − 2u2 + u3 = (u2
2)/6.

Using the boundary conditions u0 = 4, u3 = 1 we get the equations

F1(u1, u2) = u2
1 + 12u1 − 6u2 − 24 = 0.

F2(u1, u2) = u2
2 − 6u1 + 12u2 − 6 = 0.

This system of equations can be solved by any iterative method. We use the

Newton - Raphson method to solve this system. We have

∂F1

∂u1
= 2u1 + 12, ∂F1

u2
= −6,

∂F2

∂u1
= −6, ∂F2

u2
= 2u2 + 12.
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J(u|s|)∆u|s| =

















∂F1

∂u1

∂F1

∂u2

∂F1

∂u1

∂F1

∂u2

































∆u
(s)
1

∆u
(s)
2

















Therefore, we have

















2u
(s)
1 + 12 −6

−6 2u
(s)
2 + 12

































∆u
(s)
1

∆u
(s)
2

















= −

















(u
(s)
1 )2 + 12u

(s)
1 − 6u

(s)
2 − 24

(u
(s)
2 )2 − 6u

(s)
1 + 12u

(s)
2 − 6

















Since J is a 2 × 2 matrix, we may invert it and solve the system. We obtain
















∆u
(s)
1

∆u
(s)
2

















= − 1
D

















2u
(s)
2 + 12 6

6 2u
(s)
1 + 12

































(u
(s)
1 )2 + 12u

(s)
1 − 6u

(s)
2 − 24

(u
(s)
2 )2 − 6u

(s)
1 + 12u

(s)
2 − 6

















The next iterate is obtained from

















u
(s+1)
1

u
(s+1)
2

















where D = (2u
(s)
1 +12)(2u

(s)
2 +12)−

36.

The next iterate is obtained by

















u
(s+1)
1

u
(s+1)
2

















=

















u
(s)
1

u
(s)
2

















+

















∆u
(s)
1

∆u
(s)
2

















, s = 0, 1, 2, . . .

Taking u
(0)
1 = 2 and u

(0)
2 = 1.5, we obtain the following results.

u
(1)
1 = 2.3014706, u

(1)
2 = 1.4705882,

u
(2)
1 = 2.2950429, u

(2)
2 = 1.4679491,
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u
(3)
1 = 2.3014706, u

(3)
2 = 1.4679474.

Example 3.5. Obtain the numerical solution of the nonlinear boundary value

problem

u′′ = 1
2
(1 + x+ u)3.

u′(0) − u(0) = −1/2, u′(1) + u(1) = 1.

with h = 1/2. Use a second order finite difference method.

The nodal points are x0 = 0, x1 = 1/2, x2 = 1. We have a0 = −1, a1 =

−1, γ1 = −1/2, b0 = b1 = γ2 = 1.

The system of nonlinear equations −uN + (1 + α)uN+1 + h2

6
(fN + 2fN+1) = hγ2

b1

becomes

(1 + h)u0 − u1 + h2

2
[1
3
(1 + x0 + u0)

3 + 1
6
(1 + x1 + u1)

3] − h
2

= 0.

−u0 + 2u0 − u2 + h2

2
(1 + x1 + u1)

3.

−u1 + (1 + h)u2 + h2

2
[1
6
(1 + x1 + u1)

3 + 1
3
(1 + x2 + u2)

3] − h = 0.

The Newton - Raphson method gives the following linear equations




























3
2

+ 1
8
(1 + u

(s)
0 )2 −1 + 1

16
(3

2
+ u

(s)
1 )2 0

−1 2 + 3
8
(3

2
+ u

(s)
1 )2 −1

0 −1 + 1
16

(3
2

+ u
(s)
1 )2 3

2
+ 1

8
(2 + u

(s)
2 )2

























































∆u
(s)
0

∆u
(s)
1

∆u
(s)
2





























=





























3
2
u

(s)
0 − u

(s)
1 + 1

8
[1
3
(1 + u

(s)
0 )3 + 1

6
(3

2
+ u

(s)
1 )2] − 1

4

−u(s)
0 + 2u

(s)
1 − u

(s)
2 + 1

8
(3

2
+ u

(s)
1 )3

−u(s)
1 + 3

2
u

(s)
2 + 1

8
[1
6
(3

2
+ u

(s)
1 )3 + 1

3
(2 + u

(s)
2 )3 − 1

2
]




























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and u
(s+1)
0 = u

(s)
0 + ∆u

(s)
0 , u

(s+1)
1 = u

(s)
1 + ∆u

(s)
1 ,

u
(s+1)
2 = u

(s)
2 + ∆u

(s)
2 .

Using u
(0)
0 = 0.001, u

(0)
1 = −0.1, u

(0)
2 = −0.0228, we get after three iterations

u
(3)
0 = −0.0023, u

(3)
1 = −0.1622, u

(3)
2 = −0.0228.

The analytical solution of the boundary problem is

u(x) = 2
2−x

− x− 1.

u(0) = 0, u(1/2) = −0.1667, u(1) = 0.

Example 3.6. Solve the boundary value problem

u′′ = u′ + 1

u(0) = 1, u(1) = 2(e− 1) ,

Using a (i) second order method, (ii) fourth order method, with h = 1/3 . Com-

pare with the exact solution u(x) = 2ex − x− 1 .

For h = 1/3 , we have four nodal points, x0 = 0, x1 = 1/3, x2 = 2/3, x3 = 1 .

The values of u at x0 and x3 are given from the boundary conditions. We have

u0 = 1, u3 = 2(e− 1) ,

The second order method (7.108)gives the difference equation

uj−1 − 2uj + uj+1 = h2(u′j + 1) = h2
[uj+1−uj−1

2h
+ 1

]

or
(

1 + h
2

)

uj−1 − 2uj +
(

1 − h
2

)

uj−1 = h2, j = 1, 2 .

For h = 1/3 and j = 1, 2 we get the system of equations

(7/6)u0 − 2u1 + (5/6)u2 = (1/9)

(7/6)u1 − 2u2 + (5/6)u3 = (1/9)

Using the boundary conditions u0 = 1, u3 = 2(e− 1) and simplifying, we obtain
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−36u1 + 15u2 = −19

21u− 36u2 = 32 − 30e = −49.548455 .

Solving these equations, we get u1 = 1.454869, u2 = 2.225019 .

(ii) We discretize the differential equation by the fourth order method (7.110).

We obtain

uj−1 − 2uj + uj+1 = h2

12

[

f̄j+1 + 10f̂j + 1f̄j−1

]

uj−1 = h2

12

[

(ū′j+1 + 1) + 10(û′j + 1) + (ūj−1 + 1)
]

, j = 1, 2 .

Using the approximations (7.111), we get

uj−1 − 2uj + uj+1 = h2

12

[

(ū′j+1 + ū′j−1 + 12 + 10{ū′j − h
20

(f̄j+1 − f̄j−1}
]

= h2

12

[

12 + ū′j+1 + 10ū′j + ū′j−1 − h
2
{(ū′j+1 + 1) − (ūj−1 + 1)}

]

= h2

12

[

12 +
(

1 − h
2

)

ū′j+12 + 10{ū′j +
(

1 + h
2

)

(ū′j−1

]

= h2

12
[12 + 1

2h

(

1 − h
2

)

(3uj+1 − 4uj + uj−1) + 10
2h

(uj+1 − uj−1) +

1
2h

(

1 + h
2

)

(−uj+1 + 4uj − 3uj−1)]

Simplifying, we obtain the difference equation
(

1 + h
2

+ h2

12

)

uj−1 −
(

2 + h2

6

)

uj +
(

1 − h
2

+ h2

12

)

uj+1 = h2 .

For h = 1/3 and j = 1, 2 , we get the system of equations

127
108
u0 − 109

54
u1 + 91

108
u2 = 1

9

127
108
u1 − 109

54
u2 + 91

108
u3 = 1

9

Using the boundary conditions, we obtain

91u2 − 218u1 = −115

218u2 + 127u1 = 12 − 91(2e− 2) = −300.727293 .

Solving these equations, we get u1 = 1.457897, u2 = 2.228808 .

Exact solution is u(1/3) = 1.457892, u(2/3) = 2.228801 .

Example 3.7. Solve the boundary value problem

u′′ = u+ x
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u(0) = 0, u(1) = 0

with h = 1/4 . Use the following methods

(i) the second order method, (ii) the Numerov method.

We divide the interval [0, 1] into four subintervals. The nodal points are xj =

jh , j = 0, 1, 2, 3, 4 and h = 1/4 .

(i) The second order method gives the following system of equations

uj−1−2uj+uj+1

h2 = uj + xj, j = 1, 2, 3.

Multiplying by −h2 we obtain

−uj−1 + 2uj − uj+1 = −h2(uj + xj), j = 1, 2, 3.

For h = 1/4 , we get

−16uj−1 + 33uj − 16uj+1 = −xj .

We have

for j = 1 : − 16u0 + 33u1 − 16u2 = −0.25 .

for j = 2 : − 16u1 + 33u2 − 16u3 = −0.50 .

for j = 3 : − 16u2 + 33u3 − 16u4 = −0.75 .

Using the boundary conditions u0 = u4 = 0 , we get the system of equations

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




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


















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






















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




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


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
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


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
















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
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























which gives

u1 = −0.034885, u2 = −0.056326, u3 = −0.050037 .

(ii) The Numerov method, with q(x) = 1, r(x) = −x, h = 1/4 gives the
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following system of equations

uj−1−2uj +uj+1 = 1
192

[(uj−1 + xj−1) + 10(uj + xj) + (uj+1 + xj+1)] , j = 1, 2, 3 .

or 191uj−1 − 394uj + 191uj+1 = xj−1 + 10xj + xj+1 .

We have

for j = 1 : 191u0 − 394u1 + 191u2 = 3 .

for j = 2 : 191u1 − 394u2 + 191u3 = 6 .

for j = 3 : 191u2 − 394u3 + 191u4 = 9 .

Using the boundary conditions u0 = u4 = 0 , we get the system of equations

− 394u1 + 191u2 = 3

191u1 − 394u2 + 191u3 = 6

− 191u2 − 394u3 = 9

which gives

u(0.25) ≈ u1 = −0.0350481, u(0.50) ≈ u2 = −0.0565914, u(0.75) ≈ u3 = −0.0502765 .

The exact solution is u(x) = [(sinhx/sinh1) − x] and the exact values are

u(0.25) = −0.0350476, u(0.50) = −0.0565906, u0.75 = −0.0502758 .

The errors at the nodal points are

Second order method:

|ǫ(0.25)| = 0.000163, |ǫ(0.50)| = 0.00265, |ǫ(1.0)| = 0.000239 .

Numerov method

|ǫ(0.25)| = 0.0000005, |ǫ(0.50)| = 0.0000008, |ǫ(1.0)| = 0.0000007 .

Example 3.8. Solve the boundary value problem

u′′ = xu

u(0) + u′(0) = 1, u(1) = 1

with h = 1/3 . Use the second order method

uj−1 − 2uj + uj+1 = h2fj .

With h = 1/3 , we have four nodal points xj = jh, j = 0, 1, 2, 3 that is
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0, 1/3, 2/3, 1 . The second order method gives the following system of equations

uj−1 − 2uj + uj+1 = 1
9
xjuj, j = 0, 1, 2, 3 .

We have

for j = 0 : u−1 − 2u0 + u1 = 0 .

for j = 1 : u0 − 2u1 + u2 = ( 1
27

)u1 .

for j = 2 : u1 − 2u2 + u3 = ( 2
27

)u2 .

Since the method is of second order, we may replace u′(0) in the boundary con-

dition by the approximation

u′(0) = (u1 − u−1)/(2h)

which is also of second order. Thus,the boundary conditions become

u0 + (3/2)(u1 − u−1) = 1 and u3 = 1 .

Eliminating u−1 , we get the equations

−2u0 + 3u1 = 1

u0 − (55/27)u1 + u2 = 0

u1 − (56/27)u2 = −1 .

Solving the system of equations we get

u(0) ≈ u0 = −0.9879518, u(1/3) ≈ u1 = −0.3253012 ,

u(2/3) ≈ u2 = −0.3253012

Example 3.9. Solve the boundary value problem

u′′ + u = x, 0 < x < 1

u(0) = 4, u(1) = 1

using the Ritz finite element method with linear piecewise polynomials for two

and three elements of equal lengths. Compare with the exact solution u(x) =

x+ 4[sin(1 − x)/sin1].
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(i) Two elements of equal length. From equation 1
12
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
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




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
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
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

























u0

u1

u2





























=





























1/2

3

5/2




























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Using the procedure described in the text





















































1 • • • . . . •

• × × . . .

• × × × . . .

... × × •

• • • • • 1





















































































































u0

u1

u2

...

uN

uN+1

































































=

































































γ1

×

×

...

×

γ2

































































−γ1

































































•

×

×

...

×

×

































































−γ2

































































×

×

×

...

×

•

































































, we can incorporate the boundary conditions

u0 = 4, u2 = 1 and obtain the system
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



























1 0 0

0 −44 0

0 0 1

























































u0

u1

u2





























=





























4

3

1





























−4





























0

25

0





























−1





























0

25

0





























=





























4

−122

1





























The solution

is u1 = 122
44

= 2.77273.

The exact solution is u(0.5) = 2.77273.

(ii) Three elements of equal length. From equation 1
18









































−52 55 0 0

55 −104 55 0

0 55 −104 55

0 0 55 −52

















































































u0

u1

u2

u3









































− 1
54









































1

6

12

8









































= 0, we get
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







































−52 55 0 0

55 −104 55 0

0 55 −104 55

0 0 55 −52

















































































u0

u1

u2

u3









































=









































1/3

2

4

8/3









































Incorporating the boundary conditions u0 = 4, u2 = 1, we obtain








































1 0 0 0

0 −104 55 0

0 55 −104 0

0 0 0 1

















































































u0

u1

u2

u3









































=









































4

2

4

1









































−4





























0

55 0

0





























−1









































0

0

55

0









































=









































4

−218

−51

1









































Solving the resulting system of equations
















−104 55

55 −104

































u1

u2

















=

















−218

−51

















We obtain u1 = 3.270055, u2 = 2.2219741.

The exact solution is u(1/3) = 3.272804, u(2/3) = 2.222013.
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